With the rapid development of 5G technology, acoustic wave filters with large bandwidths are urgently required to deal with the explosive increase in data traffic. Recently, there is extensive attention paid to shear-horizontal (SH) surface acoustic wave (SAW) resonators based on lithium niobate (LiNbO3) substrates, thanks to its large effective coupling coefficient (k2eff). However, because of the bulk acoustic wave (BAW) energy radiation into the LiNbO3 substrate, it is very challenging to obtain a high quality factor (Q) for SH-SAW resonators. In this study, a 30° YX-LiNbO3/SiO2/Si SAW resonator with the SH mode is proposed to achieve a large coupling and a high Q simultaneously. By bonding a LiNbO3 thin film onto a thermally oxidized Si(100) substrate, the velocity mismatch between the piezoelectric layer and the SiO2/Si substrate could significantly reduce the BAW energy leakage. Finite element method simulation is employed to optimize the cut angle of the LiNbO3 film and the thickness of each layer. The fabricated SH-SAW resonators with a resonant frequency of 924 MHz yield a k2eff of 24.8% and a maximum of Bode-Q (Bode-Qmax) of 1107. In comparison with the previously reported same-type SAW resonators, a higher Bode-Qmax is demonstrated in this work when their k2eff is larger than 20%, providing a potential solution to enable wideband tunable filters in the 5G communication system.

1.
C.
Sun
,
B. W.
Soon
,
Y.
Zhu
,
N.
Wang
,
S. P. H.
Loke
,
X.
Mu
,
J.
Tao
, and
A. Y.
Gu
,
Appl. Phys. Lett.
106
,
253502
(
2015
).
2.
A.
Ding
,
L.
Kirste
,
Y.
Lu
,
R.
Driad
,
N.
Kurz
,
V.
Lebedev
,
T.
Christoph
,
N. M.
Feil
,
R.
Lozar
,
T.
Metzger
,
O.
Ambacher
, and
A.
Žukauskaitė
,
Appl. Phys. Lett.
116
,
101903
(
2020
).
3.
A.
Stefanescu
,
A.
Muller
,
I.
Giangu
,
A.
Dinescu
, and
G.
Konstantinidis
,
IEEE Electron Device Lett.
37
,
321
(
2016
).
4.
C.-M.
Lin
,
Y.-Y.
Chen
, and
T.-T.
Wu
,
J. Phys. D: Appl. Phys.
39
,
466
(
2006
).
5.
M.
Kadota
and
S.
Tanaka
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
939
(
2015
).
6.
C.-M.
Lin
,
Y.-J.
Lai
,
J.-C.
Hsu
,
Y.-Y.
Chen
,
D. G.
Senesky
, and
A. P.
Pisano
,
Appl. Phys. Lett.
99
,
143501
(
2011
).
7.
C.-M.
Lin
,
Y.-Y.
Chen
,
V. V.
Felmetsger
,
D. G.
Senesky
, and
A. P.
Pisano
,
Adv. Mater.
24
,
2722
(
2012
).
8.
J.
Zou
,
F.
Iliev
,
R. B.
Hammond
,
S.
Samadian
,
P. J.
Turner
,
V.
Yantchev
,
N. O.
Fenzi
, and
V.
Plessky
, in
2018 IEEE International Ultrasonics Symposium
(
IEEE
,
Kobe
,
2018
), pp.
1
4
.
9.
G.
Tang
,
T.
Han
,
A.
Teshigahara
,
T.
Iwaki
, and
K.
Hashimoto
, in
2015 Joint Conference of the IEEE IFCS & EFTF
(
IEEE
,
Denver, CO
,
2015
), pp.
416
419
.
10.
T.
Lu
,
J. D.
Schneider
,
S.
Tiwari
,
X.
Zou
,
L. K.
Yeung
,
R. N.
Candler
,
G. P.
Carman
, and
Y. E.
Wang
,
Appl. Phys. Lett.
118
,
254101
(
2021
).
11.
G.
Esteves
,
T. R.
Young
,
Z.
Tang
,
S.
Yen
,
T. M.
Bauer
,
M. D.
Henry
, and
R. H.
Olsson
,
Appl. Phys. Lett.
118
,
171902
(
2021
).
12.
C.-M.
Lin
,
Y.-Y.
Chen
,
V. V.
Felmetsger
,
W.-C.
Lien
,
T.
Riekkinen
,
D. G.
Senesky
, and
A. P.
Pisano
,
J. Micromech. Microeng.
23
,
025019
(
2013
).
13.
T.
Takai
,
H.
Iwamoto
,
Y.
Takamine
,
H.
Yamazaki
,
T.
Fuyutsume
,
H.
Kyoya
,
T.
Nakao
,
H.
Kando
,
M.
Hiramoto
,
T.
Toi
,
M.
Koshino
, and
N.
Nakajima
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
64
,
1382
(
2017
).
14.
T.
Kimura
,
M.
Omura
,
Y.
Kishimoto
, and
K.
Hashimoto
,
IEEE Trans. Microwave Theory Tech.
67
,
915
(
2019
).
15.
M.
Kadota
and
S.
Tanaka
, in
2017 International Ultrasonics Symposium
(
IEEE
,
Washington, DC
,
2017
), pp.
1
4
.
16.
M.
Kadota
,
Y.
Ishii
, and
S.
Tanaka
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
68
,
1955
(
2021
).
17.
T.
Kimura
,
Y.
Kishimoto
,
M.
Omura
, and
K.
Hashimoto
,
Jpn. J. Appl. Phys.
57
,
07LD15
(
2018
).
18.
K.-J.
Tseng
and
M.-H.
Li
, in
2020 Joint Conference of the IEEE IFCS-ISAF
(
IEEE
,
Keystone, CO
,
2020
), pp.
1
3
.
19.
J.
Shen
,
S.
Fu
,
R.
Su
,
H.
Xu
,
Z.
Lu
,
Z.
Xu
,
J.
Luo
,
F.
Zeng
,
C.
Song
,
W.
Wang
, and
F.
Pan
,
IEEE Trans. Microwave Theory Tech.
69
,
3693
(
2021
).
20.
T.-H.
Hsu
,
K.-J.
Tseng
, and
M.-H.
Li
,
IEEE Electron Device Lett.
41
,
1825
(
2020
).
21.
R.
Su
,
J.
Shen
,
Z.
Lu
,
H.
Xu
,
Q.
Niu
,
Z.
Xu
,
F.
Zeng
,
C.
Song
,
W.
Wang
,
S.
Fu
, and
F.
Pan
,
IEEE Electron Device Lett.
42
,
438
(
2021
).
22.
A.
Kochhar
,
A.
Mahmoud
,
Y.
Shen
,
N.
Turumella
, and
G.
Piazza
,
J. Microelectromech. Syst.
29
,
1464
(
2020
).
23.
C.-Y.
Chen
,
S.-S.
Li
,
M.-H.
Li
,
A.
Gao
,
R.
Lu
, and
S.
Gong
, in
2019 Joint Conference of the IEEE EFTF/IFC
(
IEEE
,
Orlando, FL
,
2019
), pp.
1
4
.
24.
R.
Aigner
, in
International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems
,
2007
.
25.
D. A.
Feld
,
R.
Parker
,
R.
Ruby
,
P.
Bradley
, and
S.
Dong
, in
2008 IEEE Ultrasonics Symposium
(
IEEE
,
Beijing
,
2008
), pp.
431
436
.

Supplementary Material

You do not currently have access to this content.