The second-order χ(2) process underpins many important nonlinear optical applications in the field of classical and quantum optics. Generally, the χ(2) process manifests itself only in a non-centrosymmetric dielectric medium via an anharmonic electron oscillation when driven by an intense optical field. Due to inversion symmetry, group-IV semiconductors, such as silicon (Si) and germanium (Ge), are traditionally not considered as ideal candidates for second-order nonlinear optics applications. Here, we report the experimental observation of the second-harmonic generation (SHG) in a Ge-on-insulator (GOI) sample under femtosecond optical pumping. We especially, report the measurement of the SHG signal from a GOI sample in the telecom S-band by pumping at 3000 nm.

1.
P. A.
Franken
,
A. E.
Hill
,
C. W.
Peters
, and
G.
Weinreich
, “
Generation of optical harmonics
,”
Phys. Rev. Lett.
7
,
118
119
(
1961
).
2.
D. J.
Kane
and
R.
Trebino
, “
Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating
,”
IEEE J. Quantum Electron.
29
,
571
579
(
1993
).
3.
Y.
Nomura
,
H.
Shirai
, and
T.
Fuji
, “
Frequency-resolved optical gating capable of carrier-envelope phase determination
,”
Nat. Commun.
4
,
1
11
(
2013
).
4.
P. J.
Campagnola
,
A. C.
Millard
,
M.
Terasaki
,
P. E.
Hoppe
,
C. J.
Malone
, and
W. A.
Mohler
, “
Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues
,”
Biophys. J.
82
,
493
508
(
2002
).
5.
X.
Chen
,
O.
Nadiarynkh
,
S.
Plotnikov
, and
P. J.
Campagnola
, “
Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure
,”
Nat. Protoc.
7
,
654
669
(
2012
).
6.
J.
Brendel
,
N.
Gisin
,
W.
Tittel
, and
H.
Zbinden
, “
Pulsed energy-time entangled twin-photon source for quantum communication
,”
Phys. Rev. Lett.
82
,
2594
(
1999
).
7.
A.
Dousse
,
J.
Suffczyński
,
A.
Beveratos
,
O.
Krebs
,
A.
Lemaître
,
I.
Sagnes
,
J.
Bloch
,
P.
Voisin
, and
P.
Senellart
, “
Ultrabright source of entangled photon pairs
,”
Nature
466
,
217
220
(
2010
).
8.
J.
Liu
,
R.
Su
,
Y.
Wei
,
B.
Yao
,
S.
Silva
,
Y.
Yu
,
J.
Smith
,
K.
Srinivasan
,
A.
Rastelli
,
J.
Li
, and
X.
Wang
, “
A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability
,”
Nat. Nanotechnol.
14
,
586
593
(
2019
).
9.
H.
Arnaut
and
G.
Barbosa
, “
Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion
,”
Phys. Rev. Lett.
85
,
286
(
2000
).
10.
P.
Walther
,
K. J.
Resch
,
T.
Rudolph
,
E.
Schenck
,
H.
Weinfurter
,
V.
Vedral
,
M.
Aspelmeyer
, and
A.
Zeilinger
, “
Experimental one-way quantum computing
,”
Nature
434
,
169
176
(
2005
).
11.
X.
Guo
,
C.-L.
Zou
,
C.
Schuck
,
H.
Jung
,
R.
Cheng
, and
H. X.
Tang
, “
Parametric down-conversion photon-pair source on a nanophotonic chip
,”
Light
6
,
e16249
(
2017
).
12.
R. S.
Jacobsen
,
K. N.
Andersen
,
P. I.
Borel
,
J.
Fage-Pedersen
,
L. H.
Frandsen
,
O.
Hansen
,
M.
Kristensen
,
A. V.
Lavrinenko
,
G.
Moulin
,
H.
Ou
,
C.
Peucheret
,
B.
Zsigri
, and
A.
Bjarklev
, “
Strained silicon as a new electro-optic material
,”
Nature
441
,
199
202
(
2006
).
13.
M.
Cazzanelli
,
F.
Bianco
,
E.
Borga
,
G.
Pucker
,
M.
Ghulinyan
,
E.
Degoli
,
E.
Luppi
,
V.
Véniard
,
S.
Ossicini
,
D.
Modotto
,
S.
Wabnitz
,
R.
Pierobon
, and
L.
Pavesi
, “
Second-harmonic generation in silicon waveguides strained by silicon nitride
,”
Nat. Mater.
11
,
148
154
(
2012
).
14.
S. V.
Makarov
,
M. I.
Petrov
,
U.
Zywietz
,
V.
Milichko
,
D.
Zuev
,
N.
Lopanitsyna
,
A.
Kuksin
,
I.
Mukhin
,
G.
Zograf
, and
E.
Ubyivovk
, “
Efficient second-harmonic generation in nanocrystalline silicon nanoparticles
,”
Nano Lett.
17
,
3047
3053
(
2017
).
15.
E.
Timurdogan
,
C. V.
Poulton
,
M. J.
Byrd
, and
M. R.
Watts
, “
Electric field-induced second-order nonlinear optical effects in silicon waveguides
,”
Nat. Photonics
11
,
200
206
(
2017
).
16.
F.
De Leonardis
,
B.
Troia
,
R. A.
Soref
, and
V. M. N.
Passaro
, “
Investigation of mid-infrared second harmonic generation in strained germanium waveguides
,”
Opt. Express
24
,
11126
(
2016
).
17.
H.
Rong
,
A.
Liu
,
R.
Jones
,
O.
Cohen
,
D.
Hak
,
R.
Nicolaescu
,
A.
Fang
, and
M.
Paniccia
, “
An all-silicon Raman laser
,”
Nature
433
,
292
294
(
2005
).
18.
J.
Petykiewicz
,
D.
Nam
,
D.
Sukhdeo
,
S.
Gupta
,
S.
Buckley
,
A.
Piggott
,
J.
Vučković
, and
K.
Saraswat
, “
Direct bandgap light emission from strained Ge nanowire coupled with high-Q optical cavities
,”
Nano Lett.
16
,
2168
2173
(
2016
).
19.
S.
Bao
,
D.
Kim
,
C.
Onwukaeme
,
S.
Gupta
,
K.
Saraswat
,
K.
Lee
,
Y.
Kim
,
D.
Min
,
Y.
Jung
,
H.
Qiu
,
H.
Wang
,
E. A.
Fitzgerald
,
C.
Tan
, and
D.
Nam
, “
Low-threshold optically pumped lasing in highly strained Ge nanowires
,”
Nat. Commun.
8
,
1845
(
2017
).
20.
Z.
Qi
,
H.
Sun
,
M.
Luo
,
Y.
Jung
, and
D.
Nam
, “
Strained germanium nanowire optoelectronic devices for photonic-integrated circuits
,”
J. Phys.
30
,
334004
(
2018
).
21.
H.
Joo
,
Y.
Kim
,
D.
Burt
,
Y.
Jung
,
L.
Zhang
,
M.
Chen
,
S.
Parluhutan
,
D.
Kang
,
C.
Lee
,
S.
Assali
,
O.
Moutanabbir
,
Y.
Cho
,
C.
Tan
, and
D.
Nam
, “
1D photonic crystal direct bandgap GeSn-on-insulator laser
,”
Appl. Phys. Lett.
119
,
201101
(
2021
).
22.
Y.
Kim
,
S.
Assali
,
D.
Burt
,
Y.
Jung
,
H.
Joo
,
M.
Chen
,
D.
Kang
,
Z.
Ikonic
,
O.
Moutanabbir
, and
D.
Nam
, “
Enhanced GeSn microdisk lasers directly released on Si
,”
Adv. Opt. Mater.
10
,
2101213
(
2022
).
23.
R.
Soref
, “
Mid-infrared photonics in silicon and germanium
,”
Nat. Photonics
4
,
495
497
(
2010
).
24.
J.
Kang
,
M.
Takenaka
, and
S.
Takagi
, “
Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits
,”
Opt. Express
24
,
11855
11864
(
2016
).
25.
C. K.
Chen
,
A. R. B.
De Castro
, and
Y. R.
Shen
, “
Surface-enhanced second-harmonic generation
,”
Phys. Rev. Lett.
46
,
145
148
(
1981
).
26.
T. F.
Heinz
,
M. T.
Loy
, and
W. A.
Thompson
, “
Study of Si(111) surfaces by optical second-harmonic generation: Reconstruction and surface phase transformation
,”
Phys. Rev. Lett.
54
,
63
66
(
1985
).
27.
R. W. J.
Hollering
,
A. J.
Hoeven
, and
J. M.
Lenssinck
, “
Optical second-harmonic generation study of Si and Ge deposition on Si(001)
,”
J. Vac. Sci. Technol.
8
,
3194
3197
(
1990
).
28.
D.
Nam
,
J.-H.
Kang
,
M. L.
Brongersma
, and
K. C.
Saraswat
, “
Observation of improved minority carrier lifetimes in high-quality Ge-on-insulator using time-resolved photoluminescence
,”
Opt. Lett.
39
,
6205
6208
(
2014
).
29.
D.
Nam
,
D.
Sukhdeo
,
S.
Gupta
,
J.
Kang
,
M.
Brongersma
, and
K.
Saraswat
, “
Study of carrier statistics in uniaxially strained Ge for a low-threshold Ge laser
,”
IEEE J. Sel. Top. Quantum Electron.
20
,
16
22
(
2014
).
30.
D.
Burt
,
H.
Joo
,
Y.
Jung
,
Y.
Kim
,
M.
Chen
,
Y.
Huang
, and
D.
Nam
, “
Strain-relaxed GeSn-on-insulator (GeSnOI) microdisks
,”
Opt. Express
29
,
28959
28967
(
2021
).
31.
R. W.
Boyd
,
Nonlinear Optics
(
Academic Press
,
2020
).
32.
J.
Gosciniak
and
M.
Rasras
, “
High-bandwidth and high-responsivity waveguide-integrated plasmonic germanium photodetector
,”
J. Opt. Soc. Am. B
36
,
2481
(
2019
).
33.
G. E.
Stillman
,
V. M.
Robbins
, and
N.
Tabatabaie
, “
III-V compound semiconductor devices: Optical detectors
,”
IEEE Trans.
31
,
1643
1655
(
1984
).
You do not currently have access to this content.