It has been established that the formation of point defects and their behaviors could be regulated by growth details such as growth techniques and growth conditions. In this work, we prove that C doping approaches have great influence on the charge state of CN, thus the interaction between H and C in GaN. For GaN with intrinsic C doping, which is realized by reducing the V/III ratio, CN mainly exists in the form of CN charged from the higher concentration of VN and, thus, may attract H+ by coulomb interaction. Whereas for the extrinsically C doped GaN with propane as the doping source, the concentration of VN is reduced, and CN mainly exists in neutral charge state and, thus, nearly does not attract H ions. Therefore, we demonstrate that the interplay between H and C atoms is weaker for the extrinsically C doped GaN compared to the intrinsically doped GaN, thus gives a clear picture about the different charge states of CN and the formation of C–H complexes in GaN with different C doping approaches.

1.
F.
Tuomisto
,
V.
Prozheeva
,
I.
Makkonen
,
T. H.
Myers
,
M.
Bockowski
, and
H.
Teisseyre
,
Phys. Rev. Lett.
119
,
196404
(
2017
).
2.
U.
Wahl
,
L. M.
Amorim
,
V.
Augustyns
,
A.
Costa
,
E.
David-Bosne
,
T. A. L.
Lima
,
G.
Lippertz
,
J. G.
Correia
,
M. R.
da Silva
,
M. J.
Kappers
,
K.
Temst
,
A.
Vantomme
, and
L. M. C.
Pereira
,
Phys. Rev. Lett.
118
,
095501
(
2017
).
3.
K.
Irmscher
,
I.
Gamov
,
E.
Nowak
,
G.
Gartner
,
F.
Zimmermann
,
F. C.
Beyer
,
E.
Richter
,
M.
Weyers
, and
G.
Trankle
,
Appl. Phys. Lett.
113
,
262101
(
2018
).
4.
Y.
Xu
,
Z. Q.
Li
,
X. L.
Yang
,
L.
Shi
,
P.
Zhang
,
X. Z.
Cao
,
J. F.
Nie
,
S.
Wu
,
J.
Zhang
,
Y. X.
Feng
,
Y.
Zhang
,
X. L.
Wang
,
W. K.
Ge
,
K.
Xu
, and
B.
Shen
,
Jpn. J. Appl. Phys., Part 1
58
,
090901
(
2019
).
5.
Y. Q.
Chen
,
Y. C.
Zhang
,
Y.
Liu
,
X. Y.
Liao
,
Y. F.
En
,
W. X.
Fang
, and
Y.
Huang
,
IEEE Trans. Electron Devices
65
,
1321
(
2018
).
6.
M. J.
Uren
,
J.
Moreke
, and
M.
Kuball
,
IEEE Trans. Electron Devices
59
,
3327
(
2012
).
7.
J.
Glaab
,
J.
Ruschel
,
T.
Kolbe
,
A.
Knauer
,
J.
Rass
,
H. K.
Cho
,
N. L.
Ploch
,
S.
Kreutzmann
,
S.
Einfeldt
,
M.
Weyers
, and
M.
Kneissl
,
IEEE Photonics Technol. Lett.
31
,
529
(
2019
).
8.
Y. S.
Puzyrev
,
T.
Roy
,
M.
Beck
,
B. R.
Tuttle
,
R. D.
Schrimpf
,
D. M.
Fleetwood
, and
S. T.
Pantelides
,
J. Appl. Phys.
109
,
034501
(
2011
).
9.
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
89
,
035204
(
2014
).
10.
M.
Matsubara
and
E.
Bellotti
,
J. Appl. Phys.
121
,
195701
(
2017
).
11.
M.
Matsubara
and
E.
Bellotti
,
J. Appl. Phys.
121
,
195702
(
2017
).
12.
S. Y.
Karpov
,
Phys. Status Solidi B
258
,
2100066
(
2021
).
13.
G. C.
Yi
and
B. W.
Wessels
,
Appl. Phys. Lett.
70
,
357
(
1997
).
14.
S.
Wu
,
X. L.
Yang
,
H. S.
Zhang
,
L.
Shi
,
Q.
Zhang
,
Q. Y.
Shang
,
Z. M.
Qi
,
Y.
Xu
,
J.
Zhang
,
N.
Tang
,
X. Q.
Wang
,
W. K.
Ge
,
K.
Xu
, and
B.
Shen
,
Phys. Rev. Lett.
121
,
145505
(
2018
).
15.
H.
Yacoub
,
C.
Mauder
,
S.
Leone
,
M.
Eickelkamp
,
D.
Fahle
,
M.
Heuken
,
H.
Kalisch
, and
A.
Vescan
,
IEEE Trans. Electron Devices
64
,
991
(
2017
).
16.
D. D.
Koleske
,
A. E.
Wickenden
,
R. L.
Henry
, and
M. E.
Twigg
,
J. Cryst. Growth
242
,
55
(
2002
).
17.
X.
Li
,
J.
Bergsten
,
D.
Nilsson
,
O.
Danielsson
,
H.
Pedersen
,
N.
Rorsman
,
E.
Janzen
, and
U.
Forsberg
,
Appl. Phys. Lett.
107
,
262105
(
2015
).
18.
M. J.
Uren
,
S.
Karboyan
,
I.
Chatterjee
,
A.
Pooth
,
P.
Moens
,
A.
Banerjee
, and
M.
Kuball
,
IEEE Trans. Electron Devices
64
,
2826
(
2017
).
19.
H.
Yacoub
,
T.
Zweipfennig
,
G.
Lukens
,
H.
Behmenburg
,
D.
Fahle
,
M.
Eickelkamp
,
M.
Heuken
,
H.
Kalisch
, and
A.
Vescan
,
IEEE Trans. Electron Devices
65
,
3192
(
2018
).
20.
J.
van Tol
,
L. C.
Brunel
, and
R. J.
Wylde
,
Rev. Sci. Instrum.
76
,
074101
(
2005
).
21.
G. W.
Morley
,
L. C.
Brunel
, and
J.
van Tol
,
Rev. Sci. Instrum.
79
,
064703
(
2008
).
22.
S.
Wu
,
X. L.
Yang
,
Q.
Zhang
,
Q. Y.
Shang
,
H. Y.
Huang
,
J. F.
Shen
,
X. G.
He
,
F. J.
Xu
,
X. Q.
Wang
,
W. K.
Ge
, and
B.
Shen
,
Appl. Phys. Lett.
116
,
262101
(
2020
).
23.
F.
Zimmermann
,
J.
Beyer
,
C.
Roder
,
F. C.
Beyer
,
E.
Richter
,
K.
Irmscher
, and
J.
Heitmann
,
Phys. Status Solidi A
218
,
2100235
(
2021
).
24.
M. A.
Reshchikov
,
M.
Vorobiov
,
D. O.
Demchenko
,
U.
Ozgur
,
H.
Morkoc
,
A.
Lesnik
,
M. P.
Hoffmann
,
F.
Hoerich
,
A.
Dadgar
, and
A.
Strittmatter
,
Phys. Rev. B
98
,
125207
(
2018
).
25.
W.
Limmer
,
W.
Ritter
,
R.
Sauer
,
B.
Mensching
,
C.
Liu
, and
B.
Rauschenbach
,
Appl. Phys. Lett.
72
,
2589
(
1998
).
26.
X. L.
Yang
,
J. J.
Wu
,
Z. T.
Chen
,
Y. B.
Pan
,
Y.
Zhang
,
Z. J.
Yang
,
T. J.
Yu
, and
G. Y.
Zhang
,
Solid State Commun.
143
,
236
(
2007
).
27.
Y. T.
Lin
,
P. V.
Wadekar
,
H. S.
Kao
,
T. H.
Chen
,
H. C.
Huang
,
N. J.
Ho
,
Q. Y.
Chen
, and
L. W.
Tu
,
Appl. Phys. Lett.
104
,
062414
(
2014
).
28.
M. E.
Zvanut
,
S.
Paudel
,
U. R.
Sunay
,
W. R.
Willoughby
,
M.
Iwinska
,
T.
Sochacki
, and
M.
Bockowski
,
J. Appl. Phys.
124
,
075701
(
2018
).
29.
C.
Koller
,
L.
Lymperakis
,
D.
Pogany
,
G.
Pobegen
, and
C.
Ostermaier
,
J. Appl. Phys.
130
,
185702
(
2021
).
30.
M. G.
Ganchenkova
and
R. M.
Nieminen
,
Phys. Rev. Lett.
96
,
196402
(
2006
).
31.
J.
Neugebauer
and
C. G.
Van de Walle
,
Adv. Solid State Phys.
35
,
25
(
1996
).
32.
J.
Neugebauer
and
C. G.
Van De Walle
,
Phys. Rev. Lett.
75
,
4452
(
1995
).
33.
M.
Meneghini
,
N.
Ronchi
,
A.
Stocco
,
G.
Meneghesso
,
U. K.
Mishra
,
Y.
Pei
, and
E.
Zanoni
,
IEEE Trans. Electron Devices
58
,
2996
(
2011
).
You do not currently have access to this content.