Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.

1.
A.
Würger
,
Rep. Prog. Phys.
73
,
126601
(
2010
).
2.
J.
Chen
,
J. F.
Loo
,
D.
Wang
,
Y.
Zhang
, and
S.
Kong
,
Adv. Opt. Mater.
8
,
1900829
(
2019
).
3.
S.
Marbach
and
L.
Bocquet
,
Chem. Soc. Rev.
48
,
3102
(
2019
).
4.
R.
Niu
,
E. C.
Oǧuz
,
H.
Müller
,
A.
Reinmüller
,
D.
Botin
,
H.
Löwen
, and
T.
Palberg
,
Phys. Chem. Chem. Phys.
19
,
3104
(
2017
).
5.
D. C.
Prieve
,
J. P.
Ebel
, and
M. E.
Lowell
,
J. Fluid Mech.
148
,
247
(
1984
).
6.
J. J.
McDermott
,
A.
Kar
,
M.
Daher
,
S.
Klara
,
G.
Wang
,
A.
Sen
, and
D.
Velegol
,
Langmuir
28
,
15491
(
2012
).
7.
L.
Bocquet
and
E.
Charlaix
,
Chem. Soc. Rev.
39
,
1073
(
2010
).
8.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
9.
J.
Anderson
,
Annu. Rev. Fluid Mech.
21
,
61
(
1989
).
10.
A.
Ajdari
and
L.
Bocquet
,
Phys. Rev. Lett.
96
,
186102
(
2006
).
11.
A. P.
Bregulla
,
A.
Würger
,
K.
Günther
,
M.
Mertig
, and
F.
Cichos
,
Phys. Rev. Lett.
116
,
188303
(
2016
).
12.
J. S.
Donner
,
G.
Baffou
,
D.
McCloskey
, and
R.
Quidant
,
ACS Nano
5
,
5457
(
2011
).
13.
G.
Baffou
,
P.
Berto
,
E.
Bermúdez Ureña
,
R.
Quidant
,
S.
Monneret
,
J.
Polleux
, and
H.
Rigneault
,
ACS Nano
7
,
6478
(
2013
).
14.
G.
Baffou
,
Thermoplasmonics: Heating Metal Nanoparticles Using Light
(
Cambridge University Press
,
2017
).
15.
M.
Braun
,
A. P.
Bregulla
,
K.
Günther
,
M.
Mertig
, and
F.
Cichos
,
Nano Lett.
15
,
5499
(
2015
).
16.
E. H.
Hill
,
J.
Li
,
L.
Lin
,
Y.
Liu
, and
Y.
Zheng
,
Langmuir
34
,
13252
(
2018
).
17.
Y.
Qian
,
S. L.
Neale
, and
J. H.
Marsh
,
Sci. Rep.
10
,
19169
(
2020
).
18.
E.
Flores-Flores
,
S. A.
Torres-Hurtado
,
R.
Páez
,
U.
Ruiz
,
G.
Beltrán-Pérez
,
S. L.
Neale
,
J. C.
Ramirez-San-Juan
, and
R.
Ramos-García
,
Biomed. Opt. Express
6
,
4079
(
2015
).
19.
J. T.
Winskas
,
H.
Wang
,
A.
Zhdanov
,
S.
Cheemalapati
,
A.
Deonarine
,
S.
Westerheide
, and
A.
Pyayt
,
Micromachines
10
,
802
(
2019
).
20.
B.
Ciraulo
,
J.
Garcia-Guirado
,
I.
de Miguel
,
J.
Ortega Arroyo
, and
R.
Quidant
,
Nat. Commun.
12
,
2001
(
2021
).
21.
X.
Peng
,
J.
Li
,
L.
Lin
,
Y.
Liu
, and
Y.
Zheng
,
ACS Appl. Nano Mater.
1
,
3998
(
2018
).
22.
N.
Bruot
and
H.
Tanaka
,
Phys. Rev. Res.
1
,
33200
(
2019
).
23.
D.
Feldmann
,
S. R.
Maduar
,
M.
Santer
,
N.
Lomadze
,
O. I.
Vinogradova
, and
S.
Santer
,
Sci. Rep.
6
,
36443
(
2016
).
24.
P.
Arya
,
J.
Jelken
,
N.
Lomadze
,
S.
Santer
, and
M.
Bekir
,
J. Chem. Phys.
152
,
024904
(
2020
).
25.
M.
Umlandt
,
D.
Feldmann
,
E.
Schneck
,
S. A.
Santer
, and
M.
Bekir
,
Langmuir
36
,
14009
(
2020
).
26.
P.
Arya
,
M.
Umlandt
,
J.
Jelken
,
D.
Feldmann
,
N.
Lomadze
,
E. S.
Asmolov
,
O. I.
Vinogradova
, and
S.
Santer
,
Eur. Phys. J. E
44
,
50
(
2021
).
27.
P.
Arya
,
J.
Jelken
,
D.
Feldmann
,
N.
Lomadze
, and
S.
Santer
,
J. Chem. Phys.
152
,
194703
(
2020
).
28.
P.
Arya
,
D.
Feldmann
,
A.
Kopyshev
,
N.
Lomadze
, and
S.
Santer
,
Soft Matter
16
,
1148
(
2020
).
29.
R.-E.
Munteanu
,
M. N.
Popescu
, and
S.
Gáspár
,
Condens. Matter
4
,
73
(
2019
).
30.
N.
Ghofraniha
,
G.
Ruocco
, and
C.
Conti
,
Langmuir
25
(
21
),
12495
(
2009
).
31.
S.
Duhr
and
D.
Braun
,
Phys. Rev. Lett.
96
,
168301
(
2006
).
32.
H.
Ning
,
J. K. G.
Dhont
, and
S.
Wiegand
,
Langmuir
24
,
2426
(
2008
).

Supplementary Material

You do not currently have access to this content.