Hybrid integration of two-dimensional (2D) materials with photonic integrated circuits can enable additional functionality in planar waveguides based on excellent optical and electrical properties of 2D materials. 2D layered palladium diselenide (PdSe2) has a narrow energy bandgap and high carrier mobility, and its stability under normal laboratory environment conditions makes it of interest for use as high-performance infrared photodetectors. In this work, we propose and experimentally demonstrate a high-speed waveguide-integrated photodetector which uses chemical vapor deposition grown PdSe2 transferred onto a silicon waveguide. At 1550 nm wavelength, the photodetector can be operated without external bias with a responsivity of 0.57 mA/W and a responsivity of 20 mA/W at 6 V bias voltage. The detector had an impulse response full-width-half-maximum pulse width of about 11 ps, corresponding to a 3-dB bandwidth of 40 GHz.

2.
W.
Liu
,
M.
Liu
,
X.
Liu
,
X.
Wang
,
H. X.
Deng
,
M.
Lei
,
Z.
Wei
, and
Z.
Wei
,
Adv. Opt. Mater.
8
(
8
),
1901631
(
2020
).
3.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
(
6298
),
aac9439
(
2016
).
4.
Y.
Ding
,
Z.
Cheng
,
X.
Zhu
,
K.
Yvind
,
J.
Dong
,
M.
Galili
,
H.
Hu
,
N. A.
Mortensen
,
S.
Xiao
, and
L. K.
Oxenløwe
,
Nanophotonics
9
(
2
),
317
325
(
2020
).
5.
P.
Ma
,
Y.
Salamin
,
B.
Baeuerle
,
A.
Josten
,
W.
Heni
,
A.
Emboras
, and
J.
Leuthold
,
ACS Photonics
6
(
1
),
154
161
(
2018
).
6.
X.
Wang
,
Z.
Cheng
,
K.
Xu
,
H. K.
Tsang
, and
J.-B.
Xu
,
Nat. Photonics
7
(
11
),
888
891
(
2013
).
7.
S.
Marconi
,
M. A.
Giambra
,
A.
Montanaro
,
V.
Mišeikis
,
S.
Soresi
,
S.
Tirelli
,
P.
Galli
,
F.
Buchali
,
W.
Templ
,
C.
Coletti
,
V.
Sorianello
, and
M.
Romagnoli
,
Nat. Commun.
12
(
1
),
806
(
2021
).
8.
J. E.
Muench
,
A.
Ruocco
,
M. A.
Giambra
,
V.
Miseikis
,
D.
Zhang
,
J.
Wang
,
H. F. Y.
Watson
,
G. C.
Park
,
S.
Akhavan
, and
V.
Sorianello
,
Nano Lett.
19
(
11
),
7632
7644
(
2019
).
9.
S.
Schuler
,
D.
Schall
,
D.
Neumaier
,
L.
Dobusch
,
O.
Bethge
,
B.
Schwarz
,
M.
Krall
, and
T.
Mueller
,
Nano Lett.
16
(
11
),
7107
7112
(
2016
).
10.
N.
Youngblood
,
C.
Chen
,
S. J.
Koester
, and
M.
Li
,
Nat. Photonics
9
(
4
),
247
252
(
2015
).
11.
A.
Castellanos-Gomez
,
L.
Vicarelli
,
E.
Prada
,
J. O.
Island
,
K. L.
Narasimha-Acharya
,
S. I.
Blanter
,
D. J.
Groenendijk
,
M.
Buscema
,
G. A.
Steele
, and
J. V.
Alvarez
,
2D Mater.
1
(
2
),
025001
(
2014
).
12.
Q.
Liang
,
Q.
Wang
,
Q.
Zhang
,
J.
Wei
,
S. X.
Lim
,
R.
Zhu
,
J.
Hu
,
W.
Wei
,
C.
Lee
, and
C.
Sow
,
Adv. Mater.
31
(
24
),
1807609
(
2019
).
13.
A. D.
Oyedele
,
S.
Yang
,
L.
Liang
,
A. A.
Puretzky
,
K.
Wang
,
J.
Zhang
,
P.
Yu
,
P. R.
Pudasaini
,
A. W.
Ghosh
, and
Z.
Liu
,
J. Am. Chem. Soc.
139
(
40
),
14090
14097
(
2017
).
14.
A. D.
Oyedele
,
S.
Yang
,
T.
Feng
,
A. V.
Haglund
,
Y.
Gu
,
A. A.
Puretzky
,
D.
Briggs
,
C. M.
Rouleau
,
M. F.
Chisholm
, and
R. R.
Unocic
,
J. Am. Chem. Soc.
141
(
22
),
8928
8936
(
2019
).
15.
E.
Li
,
D.
Wang
,
P.
Fan
,
R.
Zhang
,
Y.-Y.
Zhang
,
G.
Li
,
J.
Mao
,
Y.
Wang
,
X.
Lin
, and
S.
Du
,
Nano Res.
11
(
11
),
5858
5865
(
2018
).
16.
L.-S.
Lu
,
G.-H.
Chen
,
H.-Y.
Cheng
,
C.-P.
Chuu
,
K.-C.
Lu
,
C.-H.
Chen
,
M.-Y.
Lu
,
T.-H.
Chuang
,
D.-H.
Wei
, and
W.-C.
Chueh
,
ACS Nano
14
(
4
),
4963
4972
(
2020
).
17.
A. N.
Hoffman
,
Y.
Gu
,
L.
Liang
,
J. D.
Fowlkes
,
K.
Xiao
, and
P. D.
Rack
,
npj 2D Mater. Appl.
3
(
1
),
50
(
2019
).
18.
L. H.
Zeng
,
D.
Wu
,
S. H.
Lin
,
C.
Xie
,
H. Y.
Yuan
,
W.
Lu
,
S. P.
Lau
,
Y.
Chai
,
L. B.
Luo
, and
Z. J.
Li
,
Adv. Funct. Mater.
29
(
1
),
1806878
(
2019
).
19.
G.
Li
,
S.
Yin
,
C.
Tan
,
L.
Chen
,
M.
Yu
,
L.
Li
, and
F.
Yan
,
Adv. Funct. Mater.
31
(
40
),
2104787
(
2021
).
20.
D.
Wu
,
J.
Guo
,
J.
Du
,
C.
Xia
,
L.
Zeng
,
Y.
Tian
,
Z.
Shi
,
Y.
Tian
,
X. J.
Li
, and
Y. H.
Tsang
,
ACS Nano
13
(
9
),
9907
9917
(
2019
).
21.
Z.
Dong
,
W.
Yu
,
L.
Zhang
,
H.
Mu
,
L.
Xie
,
J.
Li
,
Y.
Zhang
,
L.
Huang
,
X.
He
,
L.
Wang
,
S.
Lin
, and
K.
Zhang
,
ACS Nano
15
(
12
),
20403
20413
(
2021
).
22.
M.
Long
,
Y.
Wang
,
P.
Wang
,
X.
Zhou
,
H.
Xia
,
C.
Luo
,
S.
Huang
,
G.
Zhang
,
H.
Yan
,
Z.
Fan
,
X.
Wu
,
X.
Chen
,
W.
Lu
, and
W.
Hu
,
ACS Nano
13
(
2
),
2511
2519
(
2019
).
23.
Y.
Wang
,
Z.
Yu
,
Z.
Zhang
,
B.
Sun
,
Y.
Tong
,
J.-B.
Xu
,
X.
Sun
, and
H. K.
Tsang
,
ACS Photonics
7
(
10
),
2643
2649
(
2020
).
24.
S.
Parhizkar
,
M.
Prechtl
,
A. L.
Giesecke
,
S.
Suckow
,
S.
Wahl
,
S.
Lukas
,
O.
Hartwig
,
N.
Negm
,
A.
Quellmalz
, and
K. B.
Gylfason
, e-print arXiv:2110.12874 (
2021
).
25.
Z.
Yu
,
Y.
Wang
,
B.
Sun
,
Y.
Tong
,
J. B.
Xu
,
H. K.
Tsang
, and
X.
Sun
,
Adv. Opt. Mater.
7
(
24
),
1901306
(
2019
).
26.
X.
Gan
,
R.-J.
Shiue
,
Y.
Gao
,
I.
Meric
,
T. F.
Heinz
,
K.
Shepard
,
J.
Hone
,
S.
Assefa
, and
D.
Englund
,
Nat. Photonics
7
(
11
),
883
887
(
2013
).
27.
L.
Wang
,
L.
Han
,
W.
Guo
,
L.
Zhang
,
C.
Yao
,
Z.
Chen
,
Y.
Chen
,
C.
Guo
,
K.
Zhang
,
C.-N.
Kuo
,
C. S.
Lue
,
A.
Politano
,
H.
Xing
,
M.
Jiang
,
X.
Yu
,
X.
Chen
, and
W.
Lu
,
Light: Sci. Appl.
11
(1),
53
(
2022
).
28.
F. H. L.
Koppens
,
T.
Mueller
,
P.
Avouris
,
A. C.
Ferrari
,
M. S.
Vitiello
, and
M.
Polini
,
Nat. Nanotechnol.
9
(
10
),
780
793
(
2014
).
29.
Y.
Wang
,
Z.
Yu
,
Y.
Tong
,
B.
Sun
,
Z.
Zhang
,
J.-B.
Xu
,
X.
Sun
, and
H. K.
Tsang
,
Appl. Phys. Lett.
116
(
21
),
211101
(
2020
).
30.
Y.
Gao
,
L.
Tao
,
H. K.
Tsang
, and
C.
Shu
,
Appl. Phys. Lett.
112
(
21
),
211107
(
2018
).

Supplementary Material

You do not currently have access to this content.