Surface phonon polaritons (SPhPs) are important building blocks of nanophotonics, as they enable strong light–matter interaction on the nanoscale, are well-suited for applications in the mid- to far-infrared regime, and can show low losses. SrTiO3 is an interesting material for SPhPs, because it allows for reversible, nonvolatile doping with free charge carriers via oxygen vacancies and for local switching with conductive AFM tips. As a result, SrTiO3 could enable programmable nanophotonics with tunable SPhPs and direct writing of metasurfaces. Surface polariton properties can be determined by mapping their real-space propagation using scattering-type scanning near-field optical microscopy (s-SNOM), which is sensitive to the high local electric fields with nanoscale lateral resolution. Low-confinement (LC) SPhPs with wavevectors close to that of free-space radiation, such as in SrTiO3 and the model polar dielectric SiC, can be difficult to investigate in s-SNOM due to interference effects with the incident illumination and fringe spacings exceeding the scan range or the size of the focus spot. Here, we present s-SNOM measurements of LC-SPhPs on SiC and SrTiO3 launched at gold stripes, retrieve physical quantities such as launching amplitude and phase, and show that they are influenced strongly by gold stripe geometry as well as illumination angle. Using two complementary measurements, we show a convenient way to determine the out-of-plane angle of the s-SNOM setup. Finally, we predict how control over the free charge carrier concentration in SrTiO3 could enable tunable LC-SPhPs, showing the potential of SrTiO3 for programmable nanophotonics.

1.
D. N.
Basov
,
A.
Asenjo-Garcia
,
P. J.
Schuck
,
X.
Zhu
, and
A.
Rubio
, “
Polariton panorama
,”
Nanophotonics
10
,
549
577
(
2020
).
2.
G.
Shvets
, “
Photonic approach to making a material with a negative index of refraction
,”
Phys. Rev. B
67
,
035109
(
2003
).
3.
K.
Ohtani
,
B.
Meng
,
M.
Franckié
,
L.
Bosco
,
C.
Ndebeka-Bandu
,
M.
Beck
, and
J.
Faist
, “
An electrically pumped phonon-polariton laser
,”
Sci. Adv.
5
,
eaau1632
(
2019
).
4.
J.-J.
Greffet
,
R.
Carminati
,
K.
Joulain
,
J.-P.
Mulet
,
S.
Mainguy
, and
Y.
Chen
, “
Coherent emission of light by thermal sources
,”
Nature
416
,
61
(
2002
).
5.
J. D.
Caldwell
,
L.
Lindsay
,
V.
Giannini
,
I.
Vurgaftman
,
T. L.
Reinecke
,
S. A.
Maier
, and
O. J.
Glembocki
, “
Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons
,”
Nanophotonics
4
,
44
68
(
2015
).
6.
J. B.
Khurgin
, “
How to deal with the loss in plasmonics and metamaterials
,”
Nat. Nanotechnol.
10
,
2
6
(
2015
).
7.
F.
Keilmann
and
R.
Hillenbrand
, “
Near-field microscopy by elastic light scattering from a tip
,”
Philos. Trans. R. Soc. London, Ser. A
362
,
787
805
(
2004
).
8.
R.
Hillenbrand
,
T.
Taubner
, and
F.
Keilmann
, “
Phonon-enhanced light matter interaction at the nanometre scale
,”
Nature
418
,
159
162
(
2002
).
9.
A.
Huber
,
N.
Ocelic
,
D.
Kazantsev
, and
R.
Hillenbrand
, “
Near-field imaging of mid-infrared surface phonon polariton propagation
,”
Appl. Phys. Lett.
87
,
081103
(
2005
).
10.
R.
Hillenbrand
, “
Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction
,”
Ultramicroscopy
100
,
421
427
(
2004
).
11.
A. J.
Huber
,
N.
Ocelic
, and
R.
Hillenbrand
, “
Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy
,”
J. Microsc.
229
,
389
395
(
2008
).
12.
F.
Gunkel
,
D. V.
Christensen
,
Y. Z.
Chen
, and
N.
Pryds
, “
Oxygen vacancies: The (in)visible friend of oxide electronics
,”
Appl. Phys. Lett.
116
,
120505
(
2020
).
13.
A. S.
Barker
and
M.
Tinkham
, “
Far-infrared ferroelectric vibration mode in SrTiO3
,”
Phys. Rev.
125
,
1527
1530
(
1962
).
14.
L.
Wendler
and
R.
Haupt
, “
Long-range surface plasmon–phonon-polaritons
,”
J. Phys. C: Solid State Phys.
19
,
1871
1896
(
1986
).
15.
A. D.
Dunkelberger
,
C. T.
Ellis
,
D. C.
Ratchford
,
A. J.
Giles
,
M.
Kim
,
C. S.
Kim
,
B. T.
Spann
,
I.
Vurgaftman
,
J. G.
Tischler
,
J. P.
Long
,
O. J.
Glembocki
,
J. C.
Owrutsky
, and
J. D.
Caldwell
, “
Active tuning of surface phonon polariton resonances via carrier photoinjection
,”
Nat. Photonics
12
,
50
56
(
2018
).
16.
P.
Li
,
X.
Yang
,
T. W. W.
Maß
,
J.
Hanss
,
M.
Lewin
,
A.-K. U.
Michel
,
M.
Wuttig
, and
T.
Taubner
, “
Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material
,”
Nat. Mater.
15
,
870
875
(
2016
).
17.
Y.
Wu
,
Q.
Ou
,
Y.
Yin
,
Y.
Li
,
W.
Ma
,
W.
Yu
,
G.
Liu
,
X.
Cui
,
X.
Bao
,
J.
Duan
,
G.
Álvarez-Pérez
,
Z.
Dai
,
B.
Shabbir
,
N.
Medhekar
,
X.
Li
,
C.-M.
Li
,
P.
Alonso-González
, and
Q.
Bao
, “
Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation
,”
Nat. Commun.
11
,
2646
(
2020
).
18.
M.
Lewin
,
C.
Baeumer
,
F.
Gunkel
,
A.
Schwedt
,
F.
Gaussmann
,
J.
Wueppen
,
P.
Meuffels
,
B.
Jungbluth
,
J.
Mayer
,
R.
Dittmann
,
R.
Waser
, and
T.
Taubner
, “
Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics
,”
Adv. Funct. Mater.
28
,
1802834
(
2018
).
19.
S. C.
Kehr
,
Y. M.
Liu
,
L. W.
Martin
,
P.
Yu
,
M.
Gajek
,
S.-Y.
Yang
,
C.-H.
Yang
,
M. T.
Wenzel
,
R.
Jacob
,
H.-G.
von Ribbeck
,
M.
Helm
,
X.
Zhang
,
L. M.
Eng
, and
R.
Ramesh
, “
Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling
,”
Nat. Commun.
2
,
249
(
2011
).
20.
P.
McArdle
,
D. J.
Lahneman
,
A.
Biswas
,
F.
Keilmann
, and
M. M.
Qazilbash
, “
Near-field infrared nanospectroscopy of surface phonon-polariton resonances
,”
Phys. Rev. Res.
2
,
023272
(
2020
).
21.
M.
Lewin
, “
Using infrared nano-spectroscopy to analyze the influence of defects on the local electronic properties in resistively switching oxides and chalcogenides,” Ph.D.
thesis (
RWTH Aachen
,
Aachen
,
2020
).
22.
D. J.
Lahneman
and
M. M.
Qazilbash
, “
Hyperspectral infrared imaging of surface phonon-polaritons in SrTiO3
,”
Phys. Rev. B
104
,
235433
(
2021
).
23.
D. N.
Basov
,
M. M.
Fogler
, and
F. J.
García de Abajo
, “
Polaritons in van der Waals materials
,”
Science
354
,
aag1992
(
2016
).
24.
T.
Low
,
A.
Chaves
,
J. D.
Caldwell
,
A.
Kumar
,
N. X.
Fang
,
P.
Avouris
,
T. F.
Heinz
,
F.
Guinea
,
L.
Martin-Moreno
, and
F.
Koppens
, “
Polaritons in layered two-dimensional materials
,”
Nat. Mater.
16
,
182
194
(
2017
).
25.
J. D.
Caldwell
,
O. J.
Glembocki
,
Y.
Francescato
,
N.
Sharac
,
V.
Giannini
,
F. J.
Bezares
,
J. P.
Long
,
J. C.
Owrutsky
,
I.
Vurgaftman
,
J. G.
Tischler
,
V. D.
Wheeler
,
N. D.
Bassim
,
L. M.
Shirey
,
R.
Kasica
, and
S. A.
Maier
, “
Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators
,”
Nano Lett.
13
,
3690
3697
(
2013
).
26.
C. R.
Gubbin
,
F.
Martini
,
A.
Politi
,
S. A.
Maier
, and
S.
de Liberato
, “
Strong and coherent coupling between localized and propagating phonon polaritons
,”
Phys. Rev. Lett.
116
,
246402
(
2016
).
27.
Z.
Fei
,
G. O.
Andreev
,
W.
Bao
,
L. M.
Zhang
,
A. S.
McLeod
,
C.
Wang
,
M. K.
Stewart
,
Z.
Zhao
,
G.
Dominguez
,
M.
Thiemens
,
M. M.
Fogler
,
M. J.
Tauber
,
A. H.
Castro-Neto
,
C. N.
Lau
,
F.
Keilmann
, and
D. N.
Basov
, “
Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface
,”
Nano Lett.
11
,
4701
4705
(
2011
).
28.
D.
Brissinger
,
A. L.
Lereu
,
L.
Salomon
,
T.
Charvolin
,
B.
Cluzel
,
C.
Dumas
,
A.
Passian
, and
F.
de Fornel
, “
Discontinuity induced angular distribution of photon plasmon coupling
,”
Opt. Express
19
,
17750
17757
(
2011
).
29.
E.
Nikulin
,
D.
Mylnikov
,
D.
Bandurin
, and
D.
Svintsov
, “
Edge diffraction, plasmon launching, and universal absorption enhancement in two-dimensional junctions
,”
Phys. Rev. B
103
,
085306
(
2021
).
30.
F.
Walla
,
M. M.
Wiecha
,
N.
Mecklenbeck
,
S.
Beldi
,
F.
Keilmann
,
M. D.
Thomson
, and
H. G.
Roskos
, “
Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip
,”
Nanophotonics
7
,
269
276
(
2018
).
31.
L.
Mester
,
A. A.
Govyadinov
, and
R.
Hillenbrand
, “
High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics
,”
Nanophotonics
11
,
377
390
(
2022
).
32.
S.
Bensmann
,
F.
Gaußmann
,
M.
Lewin
,
J.
Wüppen
,
S.
Nyga
,
C.
Janzen
,
B.
Jungbluth
, and
T.
Taubner
, “
Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser
,”
Opt. Express
22
,
22369
22381
(
2014
).
33.
K.
Kamarás
,
K.-L.
Barth
,
F.
Keilmann
,
R.
Henn
,
M.
Reedyk
,
C.
Thomsen
,
M.
Cardona
,
J.
Kircher
,
P. L.
Richards
, and
J.-L.
Stehlé
, “
The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry
,”
J. Appl. Phys.
78
,
1235
1240
(
1995
).
34.
F.
Gervais
,
J.-L.
Servoin
,
A.
Baratoff
,
J. G.
Bednorz
, and
G.
Binnig
, “
Temperature dependence of plasmons in Nb-doped SrTiO3
,”
Phys. Rev. B
47
,
8187
8194
(
1993
).
35.
D.
Lang
,
L.
Balaghi
,
S.
Winnerl
,
H.
Schneider
,
R.
Hübner
,
S. C.
Kehr
,
L. M.
Eng
,
M.
Helm
,
E.
Dimakis
, and
A.
Pashkin
, “
Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy
,”
Nanotechnology
30
,
084003
(
2019
).
36.
W.
Ma
,
G.
Hu
,
D.
Hu
,
R.
Chen
,
T.
Sun
,
X.
Zhang
,
Q.
Dai
,
Y.
Zeng
,
A.
Alù
,
C.-W.
Qiu
, and
P.
Li
, “
Ghost hyperbolic surface polaritons in bulk anisotropic crystals
,”
Nature
596
,
362
366
(
2021
).
37.
A. M.
Dubrovkin
,
B.
Qiang
,
H. N. S.
Krishnamoorthy
,
N. I.
Zheludev
, and
Q. J.
Wang
, “
Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics
,”
Nat. Commun.
9
,
1762
(
2018
).

Supplementary Material

You do not currently have access to this content.