Quasi-one-dimensional (quasi-1D) materials are a newly arising topic in low-dimensional research. As a result of reduced dimensionality and enhanced anisotropy, the quasi-1D structure gives rise to novel properties and promising applications such as photodetectors. However, it remains an open question whether performance crossover will occur when the channel material is downsized. Here, we report on the fabrication and testing of photodetectors based on exfoliated quasi-1D BiSeI thin wires. Compared with the device on bulk crystal, a significantly enhanced photoresponse is observed, which is manifested by a series of performance parameters, including ultrahigh responsivity (7 × 104 A W−1), specific detectivity (2.5 × 1014 Jones), and external quantum efficiency (1.8 × 107%) when Vds = 3 V, λ = 515 nm, and P = 0.01 mW cm−2. The conventional photoconductive effect is unlikely to account for such a superior photoresponse, which is ultimately understood in terms of the increased specific surface area and the photogating effect caused by trapping states. This work provides a perspective for the modulation of optoelectronic properties and performance in quasi-1D materials.

1.
J.
Fang
,
Z.
Zhou
,
M.
Xiao
,
Z.
Lou
,
Z.
Wei
, and
G.
Shen
,
InfoMat
2
(
2
),
291
317
(
2019
).
2.
G.
Iannaccone
,
F.
Bonaccorso
,
L.
Colombo
, and
G.
Fiori
,
Nat. Nanotechnol.
13
(
3
),
183
191
(
2018
).
3.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
4.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
(
5696
),
666
669
(
2004
).
5.
X.
Chia
and
M.
Pumera
,
Nat. Catal.
1
(
12
),
909
921
(
2018
).
6.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
7.
M.
Qiu
,
D.
Wang
,
W.
Liang
,
L.
Liu
,
Y.
Zhang
,
X.
Chen
,
D. K.
Sang
,
C.
Xing
,
Z.
Li
,
B.
Dong
,
F.
Xing
,
D.
Fan
,
S.
Bao
,
H.
Zhang
, and
Y.
Cao
,
Proc. Natl. Acad. Sci. U. S. A.
115
(
3
),
501
506
(
2018
).
8.
E.
Barrigon
,
M.
Heurlin
,
Z.
Bi
,
B.
Monemar
, and
L.
Samuelson
,
Chem. Rev.
119
(
15
),
9170
9220
(
2019
).
9.
A.
Zettl
,
C. M.
Jackson
,
A.
Janossy
,
G.
Grüner
,
A.
Jacobsen
, and
A. H.
Thompson
,
Solid State Commun.
43
(
5
),
345
347
(
1982
).
10.
D. J.
Eaglesham
,
J. W.
Steeds
, and
J. A.
Wilson
,
J. Phys. C: Solid State Phys.
17
(
27
),
L697
L698
(
1984
).
11.
E.
Slot
,
M. A.
Holst
,
H. S.
van der Zant
, and
S. V.
Zaitsev-Zotov
,
Phys. Rev. Lett.
93
(
17
),
176602
(
2004
).
12.
S.
Hoang
and
P. X.
Gao
,
Adv. Energy Mater.
6
(
23
),
1600683
(
2016
).
13.
T. A.
Empante
,
A.
Martinez
,
M.
Wurch
,
Y.
Zhu
,
A. K.
Geremew
,
K.
Yamaguchi
,
M.
Isarraraz
,
S.
Rumyantsev
,
E. J.
Reed
,
A. A.
Balandin
, and
L.
Bartels
,
Nano Lett.
19
(
7
),
4355
4361
(
2019
).
14.
J.
Yang
,
Y. Q.
Wang
,
R. R.
Zhang
,
L.
Ma
,
W.
Liu
,
Z.
Qu
,
L.
Zhang
,
S. L.
Zhang
,
W.
Tong
,
L.
Pi
,
W. K.
Zhu
, and
C. J.
Zhang
,
Appl. Phys. Lett.
115
(
3
),
033102
(
2019
).
15.
L.
Yang
,
Y.
Tao
,
J.
Liu
,
C.
Liu
,
Q.
Zhang
,
M.
Akter
,
Y.
Zhao
,
T. T.
Xu
,
Y.
Xu
,
Z.
Mao
,
Y.
Chen
, and
D.
Li
,
Nano Lett.
19
(
1
),
415
421
(
2019
).
16.
X.
Zhu
,
H.
Lei
, and
C.
Petrovic
,
Phys. Rev. Lett.
106
(
24
),
246404
(
2011
).
17.
Z.
Lou
and
G.
Shen
,
Adv. Sci.
3
(
6
),
1500287
(
2016
).
18.
W. L.
Zhen
,
W. T.
Miao
,
W. L.
Zhu
,
C. J.
Zhang
, and
W. K.
Zhu
,
J. Phys.: Condens. Matter
34
(
25
),
255303
(
2022
).
19.
J. O.
Island
,
M.
Buscema
,
M.
Barawi
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
I. J.
Ferrer
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
,
Adv. Opt. Mater.
2
(
7
),
641
645
(
2014
).
20.
Z.
Yang
and
X.
Dou
,
Adv. Funct. Mater.
26
(
15
),
2406
2425
(
2016
).
21.
H.
Kind
,
H.
Yan
,
B.
Messer
,
M.
Law
, and
P.
Yang
,
Adv. Mater.
14
(
2
),
158
160
(
2002
).
22.
C.
Shen
,
X.
Gao
,
C.
Chen
,
S.
Ren
,
J. L.
Xu
,
Y. D.
Xia
, and
S. D.
Wang
,
Nanotechnology
33
(
6
),
065205
(
2022
).
23.
C. Y.
Fong
,
C.
Perlov
, and
F.
Wooten
,
J. Phys. C: Solid State Phys.
15
(
12
),
2605
2612
(
1982
).
24.
X.
Yan
,
W.-L.
Zhen
,
H.-J.
Hu
,
L.
Pi
,
C.-J.
Zhang
, and
W.-K.
Zhu
,
Chin. Phys. Lett.
38
(
6
),
068103
(
2021
).
25.
D. V.
Chepur
,
D. M.
Bercha
,
I. D.
Turyanitsa
, and
V. Y.
Slivka
,
Phys. Status Solidi B
30
(
2
),
461
468
(
1968
).
26.
A. M.
Ganose
,
K. T.
Butler
,
A.
Walsh
, and
D. O.
Scanlon
,
J. Mater. Chem. A
4
(
6
),
2060
2068
(
2016
).
27.
S.
Mubeen
and
M.
Moskovits
,
Adv. Mater.
23
(
20
),
2306
2312
(
2011
).
28.
Y.
Li
,
W.
Zhen
,
S.
Weng
,
H.
Hu
,
R.
Niu
,
Z.
Yue
,
F.
Xu
,
W.
Zhu
, and
C.
Zhang
,
J. Phys.: Condens. Matter
34
(
16
),
165001
(
2022
).
29.
D. A.
Neamen
,
Semiconductor Physics and Devices: Basic Principles
, 4th ed. (
McGraw-Hill
,
New York
,
2012
).
30.
S. R.
Weng
,
W. L.
Zhen
,
X.
Yan
,
Z. L.
Yue
,
H. J.
Hu
,
F.
Xu
,
R. R.
Zhang
,
L.
Pi
,
W. K.
Zhu
, and
C. J.
Zhang
,
J. Phys.: Condens. Matter
33
(
39
),
395001
(
2021
).
31.
J. O.
Island
,
S. I.
Blanter
,
M.
Buscema
,
H. S.
van der Zant
, and
A.
Castellanos-Gomez
,
Nano Lett.
15
(
12
),
7853
7858
(
2015
).
32.
H.
Fang
and
W.
Hu
,
Adv. Sci.
4
(
12
),
1700323
(
2017
).
33.
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D. P. R.
Aplin
,
J.
Park
,
X. Y.
Bao
,
Y. H.
Lo
, and
D.
Wang
,
Nano Lett.
7
(
4
),
1003
1009
(
2007
).
34.
J. D.
Prades
,
F.
Hernandez-Ramirez
,
R.
Jimenez-Diaz
,
M.
Manzanares
,
T.
Andreu
,
A.
Cirera
,
A.
Romano-Rodriguez
, and
J. R.
Morante
,
Nanotechnology
19
(
46
),
465501
(
2008
).
35.
Z.
Sun
and
H.
Chang
,
ACS Nano
8
(
5
),
4133
4156
(
2014
).
36.
M.
Buscema
,
J. O.
Island
,
D. J.
Groenendijk
,
S. I.
Blanter
,
G. A.
Steele
,
H. S.
van der Zant
, and
A.
Castellanos-Gomez
,
Chem. Soc. Rev.
44
(
11
),
3691
3718
(
2015
).
37.
L.
Li
,
W.
Wang
,
Y.
Chai
,
H.
Li
,
M.
Tian
, and
T.
Zhai
,
Adv. Funct. Mater.
27
(
27
),
1701011
(
2017
).
38.
W.
Zhen
,
X.
Zhou
,
S.
Weng
,
W.
Zhu
, and
C.
Zhang
,
ACS Appl. Mater. Interfaces
14
(
10
),
12571
12582
(
2022
).
39.
A. M.
Ganose
,
S.
Matsumoto
,
J.
Buckeridge
, and
D. O.
Scanlon
,
Chem. Mater.
30
(
11
),
3827
3835
(
2018
).
40.
T.
He
,
Z.
Wang
,
R.
Cao
,
Q.
Li
,
M.
Peng
,
R.
Xie
,
Y.
Huang
,
Y.
Wang
,
J.
Ye
,
P.
Wu
,
F.
Zhong
,
T.
Xu
,
H.
Wang
,
Z.
Cui
,
Q.
Zhang
,
L.
Gu
,
H. X.
Deng
,
H.
Zhu
,
C.
Shan
,
Z.
Wei
, and
W.
Hu
,
Small
17
(
4
),
e2006765
(
2021
).

Supplementary Material

You do not currently have access to this content.