The rapid development of the Internet of Things increases the demand for wearable devices. Compared with traditional chemical batteries, flexible thermoelectric technology contributes a solution for solving the power supply of wearable electronics. Here, we prepared n-type Bi2Te3 and p-type Bi0.5Sb1.5Te3 flexible thermoelectric films by the magnetron sputtering method, where the thermoelectric performance and their microstructures are systematically studied. The carrier concentration and mobility are optimized by adjusting the deposition temperature, eventually improving the thermoelectric performance and achieving the room-temperature power factors of 3.2 and 6.1 μW cm−1 K−2 for Bi2Te3 and Bi0.5Sb1.5Te3 films, respectively. Furthermore, after being bent 900 times with a radius of 5 mm, the resistance of these films barely increases, demonstrating the great potential for applications in wearable electronics. In order to further evaluate the practicability, these films are used to design a flexible thermoelectric generator, in which output performance improves with the increase in the temperature difference. The power density is up to ∼218.8 μW cm−2 at temperature differences of ∼41 K.

1.
A.
Nozariasbmarz
,
H.
Collins
,
K.
Dsouza
,
M. H.
Polash
,
M.
Hosseini
,
M.
Hyland
,
J.
Liu
,
A.
Malhotra
,
F. M.
Ortiz
,
F.
Mohaddes
,
V. P.
Ramesh
,
Y.
Sargolzaeiaval
,
N.
Snouwaert
,
M. C.
Ozturk
, and
D.
Vashaee
, “
Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems
,”
Appl. Energy
258
,
1
16
(
2020
).
2.
M.
Gao
,
L. H.
Li
, and
Y. L.
Song
, “
Inkjet printing wearable electronic devices
,”
J. Mater. Chem. C
5
,
2971
2993
(
2017
).
3.
P.
Nan
,
A.
Li
,
L.
Cheng
,
K.
Wu
,
Z.
Liang
,
F.
Lin
,
C.
Fu
,
T.
Zhu
, and
B.
Ge
, “
Visualizing the Mg atoms in Mg3Sb2 thermoelectrics using advanced iDPC-STEM technique
,”
Mater. Today Phys.
21
,
100524
(
2021
).
4.
Y.
Wang
,
L.
Yang
,
X. L.
Shi
,
X.
Shi
,
L.
Chen
,
M. S.
Dargusch
,
J.
Zou
, and
Z. G.
Chen
, “
Flexible thermoelectric materials and generators: Challenges and innovations
,”
Adv. Mater.
31
,
1807916
(
2019
).
5.
X.
Pu
,
W.
Hu
, and
Z. L.
Wang
, “
Toward wearable self-charging power systems: The integration of energy-harvesting and storage devices
,”
Small
14
,
1702817
(
2018
).
6.
H.
Shang
,
T.
Li
,
D.
Luo
,
L.
Yu
,
Q.
Zou
,
D.
Huang
,
L.
Xiao
,
H.
Gu
,
Z.
Ren
, and
F.
Ding
, “
High-performance Ag-modified Bi0.5Sb1.5Te3 films for the flexible thermoelectric generator
,”
ACS Appl. Mater. Interfaces
12
,
7358
7365
(
2020
).
7.
C.
Dagdeviren
,
Z.
Li
, and
Z. L.
Wang
, “
Energy harvesting from the animal/human body for self-powered electronics
,”
Annu. Rev. Biomed. Eng.
19
,
85
108
(
2017
).
8.
A. R. M.
Siddique
,
S.
Mahmud
, and
B.
Van Heyst
, “
A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges
,”
Renewable Sustainable Energy Rev.
73
,
730
744
(
2017
).
9.
Y. S.
Jung
,
D. H.
Jeong
,
S. B.
Kang
,
F.
Kim
,
M. H.
Jeong
,
K. S.
Lee
,
J. S.
Son
,
J. M.
Baik
,
J. S.
Kim
, and
K. J.
Choi
, “
Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference
,”
Nano Energy
40
,
663
672
(
2017
).
10.
H. J.
Shang
,
C. C.
Dun
,
Y.
Deng
,
T. G.
Li
,
Z. S.
Gao
,
L. Y.
Xiao
,
H. W.
Gu
,
D. J. J.
Singh
,
Z. F.
Ren
, and
F. Z.
Ding
, “
Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices
,”
J. Mater. Chem. A
8
,
4552
4561
(
2020
).
11.
B.
Zhao
,
G.
Pei
, and
A. P.
Raman
, “
Modeling and optimization of radiative cooling based thermoelectric generators
,”
Appl. Phys. Lett.
117
,
163903
(
2020
).
12.
J.
Mao
,
H.
Zhu
,
Z.
Ding
,
Z.
Liu
,
G. A.
Gamage
,
G.
Chen
, and
Z.
Ren
, “
High thermoelectric cooling performance of n-type Mg3Bi2-based materials
,”
Science
365
,
495
498
(
2019
).
13.
L.
Huang
,
T.
Liu
,
X.
Mo
,
G.
Yuan
,
R.
Wang
,
H.
Liu
,
X.
Lei
,
Q.
Zhang
, and
Z.
Ren
, “
Thermoelectric performance improvement of p-type Mg3Sb2-based materials by Zn and Ag co-doping
,”
Mater. Today Phys.
21
,
100564
(
2021
).
14.
N.
Jia
,
J.
Cao
,
X. Y.
Tan
,
J.
Dong
,
H.
Liu
,
C. K. I.
Tan
,
J.
Xu
,
Q.
Yan
,
X. J.
Loh
, and
A.
Suwardi
, “
Thermoelectric materials and transport physics
,”
Mater. Today Phys.
21
,
100519
(
2021
).
15.
A.
Kumar
,
K.
Kumari
,
S. J.
Ray
, and
A. D.
Thakur
, “
Graphene mediated resistive switching and thermoelectric behavior in lanthanum cobaltate
,”
J. Appl. Phys.
127
,
235103
(
2020
).
16.
W. S.
Liu
,
Q.
Jie
,
H. S.
Kim
, and
Z. F.
Ren
, “
Current progress and future challenges in thermoelectric power generation: From materials to devices
,”
Acta Mater.
87
,
357
376
(
2015
).
17.
A.
Kumar
,
M.
Battabyal
,
A.
Chauhan
,
G.
Suresh
,
R.
Gopalan
,
N. V. R.
Kumar
, and
D. K.
Satapathy
, “
Charge transport mechanism and thermoelectric behavior in Te: (PEDOT: PSS) polymer composites
,”
Mater. Res. Express
6
,
115302
(
2019
).
18.
A.
Kumar
,
R.
Kumar
, and
D. K.
Satapathy
, “
Bi2Se3-PVDF composite: A flexible thermoelectric system
,”
Physica B
593
,
412275
(
2020
).
19.
S. F.
Ma
,
C. C.
Li
,
P.
Wei
,
W. T.
Zhu
,
X. L.
Nie
,
X. H.
Sang
,
Q. J.
Zhang
, and
W. Y.
Zhao
, “
High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic nanocomposites
,”
J. Mater. Chem. A
8
,
4816
4826
(
2020
).
20.
H. F.
Zhang
,
Y. Y.
Lv
,
L.
Xu
,
Y. C.
Luo
,
H. M.
Lu
,
C. W.
Wang
,
Z. K.
Liu
,
J.
Zhou
,
Y. B.
Chen
, and
S. H.
Yao
, “
Modulating electrical transport properties of SnSe crystal to improve the thermoelectric power factor by adjusting growth method
,”
Appl. Phys. Lett.
116
,
092103
(
2020
).
21.
M. J.
Guan
,
P. F.
Qiu
,
Q. F.
Song
,
J.
Yang
,
D. D.
Ren
,
X.
Shi
, and
L. D.
Chen
, “
Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides
,”
Rare Met.
37
,
282
289
(
2018
).
22.
F.
Meng
,
S.
Sun
,
J.
Ma
,
C.
Chronister
,
J.
He
, and
W.
Li
, “
Anisotropic thermoelectric figure-of-merit in Mg3Sb2
,”
Mater. Today Phys.
13
,
100217
(
2020
).
23.
C. C.
Zhao
and
C.
Xiao
, “
When thermoelectric materials come across with magnetism
,”
Rare Met.
40
,
752
766
(
2021
).
24.
P. H.
Le
,
S. P.
Chiu
,
S. R.
Jian
,
C. W.
Luo
,
J. Y.
Lin
,
J. J.
Lin
,
K. H.
Wu
, and
M.
Gospodinov
, “
Nanomechanical, structural, and transport properties of Bi3Se2Te thin films
,”
J. Alloys Compd.
679
,
350
357
(
2016
).
25.
G. M.
Chen
,
W.
Xu
, and
D. B.
Zhu
, “
Recent advances in organic polymer thermoelectric composites
,”
J. Mater. Chem. C
5
,
4350
4360
(
2017
).
26.
S. D.
Xu
,
M.
Hong
,
X. L.
Shi
,
Y.
Wang
,
L.
Ge
,
Y.
Bai
,
L. Z.
Wang
,
M.
Dargusch
,
J.
Zou
, and
Z. G.
Chen
, “
High-performance PEDOT: PSS flexible thermoelectric materials and their devices by triple post-treatments
,”
Chem. Mater.
31
,
5238
5244
(
2019
).
27.
J. L.
Blackburn
,
A. J.
Ferguson
,
C.
Cho
, and
J. C.
Grunlan
, “
Carbon-nanotube-based thermoelectric materials and devices
,”
Adv. Mater.
30
,
1704386
(
2018
).
28.
H.
Zhu
,
J. Y.
Zhao
, and
C.
Xiao
, “
Improved thermoelectric performance in n-type BiTe facilitated by defect engineering
,”
Rare Met.
40
,
2829
2837
(
2021
).
29.
J.
Qiao
,
Y.
Zhao
,
Q.
Jin
,
J.
Tan
,
S.
Kang
,
J.
Qiu
, and
K.
Tai
, “
Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance
,”
ACS Appl. Mater. Interfaces
11
,
38075
38083
(
2019
).
30.
H.
Choi
,
K.
Jeong
,
J.
Chae
,
H.
Park
,
J.
Baeck
,
T. H.
Kim
,
J. Y.
Song
,
J.
Park
,
K. H.
Jeong
, and
M. H.
Cho
, “
Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface
,”
Nano Energy
47
,
374
384
(
2018
).
31.
Q.
Jin
,
S.
Jiang
,
Y.
Zhao
,
D.
Wang
,
J.
Qiu
,
D. M.
Tang
,
J.
Tan
,
D. M.
Sun
,
P. X.
Hou
,
X. Q.
Chen
,
K.
Tai
,
N.
Gao
,
C.
Liu
,
H. M.
Cheng
, and
X.
Jiang
, “
Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold
,”
Nat. Mater.
18
,
62
68
(
2019
).
32.
A. L.
Pires
,
I. F.
Cruz
,
J.
Silva
,
G. N. P.
Oliveira
,
S.
Ferreira-Teixeira
,
A. M. L.
Lopes
,
J. P.
Araujo
,
J.
Fonseca
,
C.
Pereira
, and
A. M.
Pereira
, “
Printed flexible mu-thermoelectric device based on hybrid Bi2Te3/PVA composites
,”
ACS Appl. Mater. Interfaces
11
,
8969
8981
(
2019
).
33.
X.
Zhao
,
C. S.
Zhao
,
Y. F.
Jiang
,
X. X.
Ji
,
F. G.
Kong
,
T.
Lin
,
H.
Shao
, and
W. J.
Han
, “
Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices
,”
J. Power Sources
479
,
229044
(
2020
).
34.
H. J.
Song
and
K. F.
Cai
, “
Preparation and properties of PEDOT: PSS/Te nanorod composite films for flexible thermoelectric power generator
,”
Energy
125
,
519
525
(
2017
).
35.
Y.
Ding
,
Y.
Qiu
,
K.
Cai
,
Q.
Yao
,
S.
Chen
,
L.
Chen
, and
J.
He
, “
High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator
,”
Nat. Commun.
10
,
841
(
2019
).
36.
L.
Huang
,
S.
Lin
,
Z.
Xu
,
H.
Zhou
,
J.
Duan
,
B.
Hu
, and
J.
Zhou
, “
Fiber-based energy conversion devices for human-body energy harvesting
,”
Adv. Mater.
32
,
1902034
(
2020
).
37.
R. M.
Tian
,
C. L.
Wan
,
Y. F.
Wang
,
Q. S.
Wei
,
T.
Ishida
,
A.
Yamamoto
,
A.
Tsuruta
,
W. S.
Shin
,
S.
Li
, and
K.
Koumoto
, “
A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices
,”
J. Mater. Chem. A
5
,
564
570
(
2017
).
38.
H. J.
Shang
,
F. Z.
Ding
,
Y.
Deng
,
H.
Zhang
,
Z. B.
Dong
,
W. J.
Xu
,
D. X.
Huang
,
H. W.
Gu
, and
Z. G.
Chen
, “
Highly (00l)-oriented Bi2Te3/Te heterostructure thin films with enhanced power factor
,”
Nanoscale
10
,
20189
20195
(
2018
).
39.
T. B.
Yaqub
,
T.
Vuchkov
,
P.
Sanguino
,
T.
Polcar
, and
A.
Cavaleiro
, “
Comparative study of DC and RF sputtered MoSe2 coatings containing carbon-an approach to optimize stoichiometry, microstructure, crystallinity and hardness
,”
Coatings
10
,
133
(
2020
).
40.
Y.
Ruan
,
L.
Huang
,
Y.
Yang
,
G.
Xu
,
K.
Zhong
,
Z.
Huang
, and
J. M.
Zhang
, “
Robustness of the electronic structure and charge transfer in topological insulator Bi2Te2Se and Bi2Se2Te thin films under an external electric field
,”
Phys. Chem. Chem. Phys.
22
,
3867
3874
(
2020
).
41.
J.
Mao
,
Z. H.
Liu
,
J. W.
Zhou
,
H. T.
Zhu
,
Q.
Zhang
,
G.
Chen
, and
Z. F.
Ren
, “
Advances in thermoelectrics
,”
Adv. Phys.
67
,
69
147
(
2018
).
42.
Q.
Zou
,
H. J.
Shang
,
D. X.
Huang
,
T. G.
Li
,
B. W.
Xie
,
H. W.
Gu
, and
F. Z.
Ding
, “
Improved thermoelectric performance in n-type flexible Bi2Se3+x/PVDF composite films
,”
Soft Sci.
1
,
2
(
2021
).
43.
S.
Singh
,
J.
Singh
,
J.
Kaushal
, and
S. K.
Tripathi
, “
Effects of annealing on the thermoelectric properties of nanocrystalline Bi1.2Sb0.8Te3 thin films prepared by thermal evaporation
,”
Appl. Phys. A
125
,
144
(
2019
).
44.
X. Y.
Wang
,
H. J.
Wang
,
B.
Xiang
,
H. J.
Shang
,
B.
Zhu
,
Y.
Yu
,
H.
Jin
,
R. F.
Zhao
,
Z. Y.
Huang
,
L. J.
Liu
,
F. Q.
Zu
, and
Z. G.
Chen
, “
Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy
,”
J. Mater. Sci.
54
,
4788
4797
(
2019
).
45.
Y.
Lu
,
K. F.
Cai
,
Y. F.
Ding
,
M. D.
Wang
,
C.
Jiang
,
Q.
Yao
,
C. J.
Huang
,
L. D.
Chen
, and
J. Q.
He
, “
Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices
,”
Energy Environ. Sci.
13
,
1240
(
2020
).

Supplementary Material

You do not currently have access to this content.