Polyethylene glycol (PEG) is a well-known water retention agent in biomedical products, the hydration efficiency of which is affected by its molecular weight. Using a broadband dielectric spectroscopy (100 MHz–18 THz), the hydration state of PEG aqueous solutions with various molecular weights was quantitatively evaluated. As the molecular weight increases, the restriction strength of hydration water increases in potency, while the number of hydration water molecules decreases. Owing to the opposite changes in hydration number and restriction strength, the measured collective hydrogen bond (HB) strength shows negligible molecular weight dependence. PEG with larger Mw produces a more heterogenous HB network. The internal folding and twining caused by the growth of the PEG chain obstruct the proper exposure of hydrophilic part of the monomer producing less hydration waters. The evaluation result supports an application of PEGs with low molecular weight in contact lens package solutions.

1.
D.
Laage
,
T.
Elsaesser
, and
J. T.
Hynes
, “
Water dynamics in the hydration shells of biomolecules
,”
Chem. Rev.
117
,
10694
10725
(
2017
).
2.
C. J.
Roberts
and
P. G.
Debenedetti
, “
Structure and dynamics in concentrated, amorphous carbohydrate-water systems by molecular dynamics simulation
,”
J. Phys. Chem. B
103
,
7308
7318
(
1999
).
3.
L.
Jones
,
N. A.
Brennan
,
J.
González-Méijome
 et al., “
The TFOS International Workshop on Contact Lens Discomfort: Report of the contact lens materials, design, and care subcommittee
,”
Investig. Ophthalmol. Visual Sci.
54
,
TFOS37
(
2013
).
4.
D. L.
Elbert
and
J. A.
Hubbell
, “
Surface treatments of polymers for biocompatibility
,”
Annu. Rev. Mater. Sci.
26
,
365
394
(
1996
).
5.
J.
Wu
and
S.
Chen
, “
Investigation of the hydration of nonfouling material poly(ethylene glycol) by low-field nuclear magnetic resonance
,”
Langmuir
28
,
2137
2144
(
2012
).
6.
S.
Kawabe
,
M.
Seki
, and
H.
Tabata
, “
Evaluation of hydration in a water-soluble polymer by terahertz spectroscopy
,”
Appl. Phys. Lett.
108
,
081103
(
2016
).
7.
M.
Nagai
,
H.
Yada
,
T.
Arikawa
, and
K.
Tanaka
, “
Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution
,”
Int. J. Infrared Millimeter Waves
27
,
505
515
(
2007
).
8.
S.
Ebbinghaus
,
S. J.
Kim
,
M.
Heyden
,
X.
Yu
,
U.
Heugen
,
M.
Gruebele
,
D. M.
Leitner
, and
M.
Havenith
, “
An extended dynamical hydration shell around proteins
,”
Proc. Natl. Acad. Sci.
104
(
52
),
20749
20752
(
2007
).
9.
P.
Schienbein
,
G.
Schwaab
,
H.
Forbert
,
M.
Havenith
, and
D.
Marx
, “
Correlations in the solute-solvent dynamics reach beyond the first hydration shell of ions
,”
J. Phys. Chem. Lett.
8
,
2373
2380
(
2017
).
10.
J.
Knab
,
J. Y.
Chen
, and
A.
Markelz
, “
Hydration dependence of conformational dielectric relaxation of lysozyme
,”
Biophys. J.
90
,
2576
2581
(
2006
).
11.
J. A.
Morales-Hernández
,
A. K.
Singh
,
S. J.
Villanueva-Rodriguez
, and
E.
Castro-Camus
, “
Hydration shells of carbohydrate polymers studied by calorimetry and terahertz spectroscopy
,”
Food Chem.
291
,
94
100
(
2019
).
12.
K.
Shiraga
,
A.
Adachi
,
M.
Nakamura
,
T.
Tajima
,
K.
Ajito
, and
Y.
Ogawa
, “
Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study
,”
J. Chem. Phys.
146
,
105102
(
2017
).
13.
K.
Shiraga
 et al., “
Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network
,”
J. Chem. Phys.
142
,
234504
(
2015
).
14.
K.
Amann-Winkel
,
M.-C.
Bellissent-Funel
,
L. E.
Boveet
 et al., “
X-ray and neutron scattering of water
,”
Chem. Rev.
116
,
7570
7589
(
2016
).
15.
N. V.
Nucci
,
M. S.
Pometun
, and
A. J.
Wand
, “
Site-resolved measurement of water-protein interactions by solution NMR
,”
Nat. Struct. Mol. Biol.
18
,
245
250
(
2011
).
16.
S.
Kaieda
and
B.
Halle
, “
Internal water and microsecond dynamics in myoglobin
,”
J. Phys. Chem. B
117
,
14676
14687
(
2013
).
17.
L.
Lupi
,
L.
Comez
,
M.
Paolantoni
 et al., “
Hydration and aggregation in mono- and disaccharide aqueous solutions by gigahertz-to-terahertz light scattering and molecular dynamics simulations
,”
J. Phys. Chem. B
116
,
14760
(
2012
).
18.
S.
Perticaroli
,
M.
Nakanishi
,
E.
Pashkovski
, and
A. P.
Sokolov
, “
Dynamics of hydration water in sugars and peptides solutions
,”
J. Phys. Chem. B
117
,
7729
7736
(
2013
).
19.
C.
Cao
,
K.
Serita
,
K.
Kitagishi
 et al., “
Terahertz spectroscopy tracks proteolysis by a joint analysis of absorptance and Debye model
,”
Biophys. J.
119
,
2469
2482
(
2020
).
20.
S.
Kawabe
,
M.
Seki
, and
H.
Tabata
, “
Investigation of the sol-gel transition of gelatin using terahertz time-domain spectroscopy
,”
J. Appl. Phys.
115
,
143103
(
2014
).
21.
J. E.
Bertie
and
Z.
Lan
, “
An accurate modified Kramers-Kronig transformation from reflectance to phase shift on attenuated total reflection
,”
J. Chem. Phys.
105
,
8502
8514
(
1996
).
22.
R.
Buchner
,
J.
Barthel
, and
J.
Stauber
, “
The dielectric relaxation of water between 0 °C and 35 °C
,”
Chem. Phys. Lett.
306
,
57
63
(
1999
).
23.
H.
Yada
,
M.
Nagai
, and
K.
Tanaka
, “
Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy
,”
Chem. Phys. Lett.
464
,
166
170
(
2008
).
24.
E.
Guardia
,
I.
Skarmoutsos
, and
M.
Masia
, “
Hydrogen bonding and related properties in liquid water: A Car–Parrinello molecular dynamics simulation study
,”
J. Phys. Chem. B
119
,
8926
8938
(
2015
).
25.
H.
Yada
,
M.
Nagai
, and
K.
Tanaka
, “
The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain spectroscopy
,”
Chem. Phys. Lett.
473
,
279
283
(
2009
).
26.
K.
Shiraga
,
Y.
Ogawa
, and
N.
Kondo
, “
Hydrogen bond network of water around protein investigated with terahertz and infrared spectroscopy
,”
Biophys. J.
111
,
2629
2641
(
2016
).
27.
J. G.
Kirkwood
, “
The dielectric polarization of polar liquids
,”
J. Chem. Phys.
7
,
911
919
(
1939
).
28.
E. A. S.
Cavell
, “
Dielectric relaxation in non-aqueous solutions
,”
Trans. Faraday Soc.
67
,
2225
(
1971
).
29.
I.
Skarmoutsos
,
M.
Masia
, and
E.
Guardia
, “
Structural and dipolar fluctuations in liquid water: A Car–Parrinello molecular dynamics study
,”
Chem. Phys. Lett.
648
,
102
108
(
2016
).
30.
S.
Kuga
, “
Pore size distribution analysis of gel substances by size exclusion chromatography
,”
J. Chromatogr.
206
,
449
461
(
1981
).
31.
Y.
Xu
and
M.
Havenith
, “
Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy
,”
J. Chem. Phys.
143
,
170901
(
2015
).
32.
S. I.
Hayek
, “
Mechanical vibration and damping
,”
Encyclopedia of Applied Physics
(
Wiley
,
2003
).
You do not currently have access to this content.