Low-dimensional materials with definite geometrical and electronic structures have long been pursued to fulfill the requirement of technological devices toward miniaturization, multifunctionality, and precise manufacturing. Inspired by the emerging transition metal halide monolayers with intriguing magnetic behavior, here we systematically explore stable one-dimensional (1D) structures of transition metal halides. By first-principles calculations, a total of 208 TMX2 and TMX3 (TM is 3d, 4d, 5d transition metal elements; X = F, Cl, Br, I) nanowires have been predicted, showing diverse electronic and magnetic properties, such as ferromagnetic semiconductors, half metals, and antiferromagnets. They possess many application-desired characters, including a wide range of bandgaps, small carrier effective masses, outstanding capability for solar energy harvesting, and strong ferromagnetic or antiferromagnetic order. This large family of TMXn nanowires provides a great platform for exploring exotic 1D physics as well as for designing high-performance devices.

1.
E.
Garnett
,
L.
Mai
, and
P.
Yang
, “
Introduction: 1D nanomaterials/nanowires
,”
Chem. Rev.
119
,
8955
8957
(
2019
).
2.
R.
Xiang
,
T.
Inoue
,
Y.
Zheng
,
A.
Kumamoto
,
Y.
Qian
,
Y.
Sato
,
M.
Liu
,
D.
Tang
,
D.
Gokhale
,
J.
Guo
,
K.
Hisama
,
S.
Yotsumoto
,
T.
Ogamoto
,
H.
Arai
,
Y.
Kobayashi
,
H.
Zhang
,
B.
Hou
,
A.
Anisimov
,
M.
Maruyama
,
Y.
Miyata
,
S.
Okada
,
S.
Chiashi
,
Y.
Li
,
J.
Kong
,
E. I.
Kauppinen
,
Y.
Ikuhara
,
K.
Suenaga
, and
S.
Maruyama
, “
One-dimensional van der Waals heterostructures
,”
Science
367
,
537
542
(
2020
).
3.
B. I.
Yakobson
and
Y.
Gogotsi
, “
Nested hybrid nanotubes
,”
Science
367
,
506
(
2020
).
4.
M.
Nagata
,
S.
Shukla
,
Y.
Nakanishi
,
Z.
Liu
,
Y. C.
Lin
,
T.
Shiga
,
Y.
Nakamura
,
T.
Koyama
,
H.
Kishida
,
T.
Inoue
,
N.
Kanda
,
S.
Ohno
,
Y.
Sakagawa
,
K.
Suenaga
, and
H.
Shinohara
, “
Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes
,”
Nano Lett.
19
,
4845
4851
(
2019
).
5.
A. L.
Koh
,
S.
Wang
,
C.
Ataca
,
J. C.
Grossman
,
R.
Sinclair
, and
J. H.
Warner
, “
Torsional deformations in subnanometer MoS interconnecting wires
,”
Nano Lett.
16
,
1210
1217
(
2016
).
6.
J.
Lin
,
O.
Cretu
,
W.
Zhou
,
K.
Suenaga
,
D.
Prasai
,
K. I.
Bolotin
,
N. T.
Cuong
,
M.
Otani
,
S.
Okada
,
A. R.
Lupini
,
J. C.
Idrobo
,
D.
Caudel
,
A.
Burger
,
N. J.
Ghimire
,
J.
Yan
,
D. G.
Mandrus
,
S. J.
Pennycook
, and
S. T.
Pantelides
, “
Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers
,”
Nat. Nanotech.
9
,
436
442
(
2014
).
7.
X.
Liu
,
T.
Xu
,
X.
Wu
,
Z.
Zhang
,
J.
Yu
,
H.
Qiu
,
J. H.
Hong
,
C. H.
Jin
,
J. X.
Li
,
X. R.
Wang
,
L. T.
Sun
, and
W.
Guo
, “
Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets
,”
Nat. Commun.
4
,
1776
(
2013
).
8.
Y.
Zhou
,
L.
Wang
,
S.
Chen
,
S.
Qin
,
X.
Liu
,
J.
Chen
,
D.-J.
Xue
,
M.
Luo
,
Y.
Cao
,
Y.
Cheng
,
E. H.
Sargent
, and
J.
Tang
, “
Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries
,”
Nat. Photonics
9
,
409
415
(
2015
).
9.
S.
Oh
,
S.
Chae
,
B. J.
Kim
,
A. J.
Siddiqa
,
K. H.
Choi
,
W. ‐S.
Jang
,
K. H.
Lee
,
H. Y.
Kim
,
D. K.
Lee
,
Y.‐M.
Kim
,
H. K.
Yu
, and
J.‐Y.
Choi
, “
Inorganic molecular chain Nb2Se9: Synthesis of bulk crystal and one‐atom‐thick level exfoliation
,”
Phys. Status Solidi RRL
12
,
1800451
(
2018
).
10.
J. O.
Island
,
M.
Barawi
,
R.
Biele
,
A.
Almazan
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sanchez
,
H. S.
van der Zant
,
J. V.
Alvarez
,
R.
D'Agosta
,
I. J.
Ferrer
, and
A.
Castellanos-Gomez
, “
TiS3 transistors with tailored morphology and electrical properties
,”
Adv. Mater.
27
,
2595
2601
(
2015
).
11.
A.
Lipatov
,
M. J.
Loes
,
H.
Lu
,
J.
Dai
,
P.
Patoka
,
N. S.
Vorobeva
,
D. S.
Muratov
,
G.
Ulrich
,
B.
Kastner
,
A.
Hoehl
,
G.
Ulm
,
X. C.
Zeng
,
E.
Ruhl
,
A.
Gruverman
,
P. A.
Dowben
, and
A.
Sinitskii
, “
Quasi-1D TiS3 nanoribbons: Mechanical exfoliation and thickness-dependent Raman spectroscopy
,”
ACS Nano
12
,
12713
12720
(
2018
).
12.
M. N.
Kozlova
,
Y. V.
Mironov
,
E. D.
Grayfer
,
A. I.
Smolentsev
,
V. I.
Zaikovskii
,
N. A.
Nebogatikova
,
T. Y.
Podlipskaya
, and
V. E.
Fedorov
, “
Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4)
,”
Chem. Eur. J.
21
,
4639
4645
(
2015
).
13.
S.
Dey
,
J.
Lee
,
S.
Britto
,
J. M.
Stratford
,
E. N.
Keyzer
,
M. T.
Dunstan
,
G.
Cibin
,
S. J.
Cassidy
,
M.
Elgaml
, and
C. P.
Grey
, “
Exploring cation-anion redox processes in one-dimensional linear chain vanadium tetrasulfide rechargeable magnesium ion cathodes
,”
J. Am. Chem. Soc.
142
,
19588
19601
(
2020
).
14.
T.
Pham
,
S.
Oh
,
P.
Stetz
,
S.
Onishi
,
C.
Kisielowski
,
M. L.
Cohen
, and
A.
Zettl
, “
Torsional instability in the single-chain limit of a transition metal trichalcogenide
,”
Science
361
,
263
266
(
2018
).
15.
S.
Meyer
,
T.
Pham
,
S.
Oh
,
P.
Ercius
,
C.
Kisielowski
,
M. L.
Cohen
, and
A.
Zettl
, “
Metal-insulator transition in quasi-one-dimensional HfTe3 in the few-chain limit
,”
Phys. Rev. B
100
,
041403
(
2019
).
16.
S.
Stonemeyer
,
J. D.
Cain
,
S.
Oh
,
A.
Azizi
,
M.
Elasha
,
M.
Thiel
,
C.
Song
,
P.
Ercius
,
M. L.
Cohen
, and
A.
Zettl
, “
Stabilization of NbTe3, VTe3, and TiTe3 via nanotube encapsulation
,”
J. Am. Chem. Soc.
143
,
4563
4568
(
2021
).
17.
C.
Shang
,
L.
Fu
,
S.
Zhou
, and
J.
Zhao
, “
Atomic wires of transition metal chalcogenides: A family of 1D materials for flexible electronics and spintronics
,”
JACS Au
1
,
147
155
(
2021
).
18.
Y.-G.
Kang
,
S.-W.
Kim
, and
J.-H.
Cho
, “
Competing charge density wave and antiferromagnetism of metallic atom wires in GaN (101¯0) and ZnO (101¯0)
,”
Phys. Rev. B
96
,
235416
(
2017
).
19.
C. V.
Nguyen
, “
Electric gating and interlayer coupling controllable electronic structure and Schottky contact of graphene/BiI3 van der Waals heterostructure
,”
Phys. Rev. B
103
,
115429
(
2021
).
20.
C.
Nguyen
,
N. V.
Hoang
,
H. V.
Phuc
,
A. Y.
Sin
, and
C. V.
Nguyen
, “
Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: A promising tunable optoelectronic material
,”
J. Phys. Chem. Lett.
12
,
5076
5084
(
2021
).
21.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
,
W.
Yao
,
D.
Xiao
,
P.
Jarillo-Herrero
, and
X.
Xu
, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
273
(
2017
).
22.
T.
Kong
,
K.
Stolze
,
E. I.
Timmons
,
J.
Tao
,
D.
Ni
,
S.
Guo
,
Z.
Yang
,
R.
Prozorov
, and
R. J.
Cava
, “
VI3—A new layered ferromagnetic semiconductor
,”
Adv. Mater.
31
,
1808074
(
2019
).
23.
S.
Tian
,
J. F.
Zhang
,
C.
Li
,
T.
Ying
,
S.
Li
,
X.
Zhang
,
K.
Liu
, and
H.
Lei
, “
Ferromagnetic van der Waals crystal VI3
,”
J. Am. Chem. Soc.
141
,
5326
5333
(
2019
).
24.
X.
Zhou
,
B.
Brzostowski
,
A.
Durajski
,
M.
Liu
,
J.
Xiang
,
T.
Jiang
,
Z.
Wang
,
S.
Chen
,
P.
Li
,
Z.
Zhong
,
A.
Drzewiński
,
M.
Jarosik
,
R.
Szczęśniak
,
T.
Lai
,
D.
Guo
, and
D.
Zhong
, “
Atomically thin 1T-FeCl2 grown by molecular-beam epitaxy
,”
J. Phys. Chem. C
124
,
9416
9423
(
2020
).
25.
Q.
Yao
,
J.
Li
, and
Q.
Liu
, “
Fragile symmetry-protected half metallicity in two-dimensional van der Waals magnets: A case study of monolayer FeCl2
,”
Phys. Rev. B
104
,
035108
(
2021
).
26.
A.
Hermann
,
B.
Vest
, and
P.
Schwerdtfeger
, “
Density functional study of α-CrCl2: Structural, electronic, and magnetic properties
,”
Phys. Rev. B
74
,
224402
(
2006
).
27.
G.
Natta
,
P.
Corradini
, and
G.
Allegra
, “
The different crystalline modifications of TiCl3, a catalyst component for the polymerization of α-olefins. I: α-, β-, γ-TiCl3. II: δ-TiCl3
,”
J. Polym. Sci.
51
,
399
410
(
1961
).
28.
S.
Merlino
,
L.
Labella
,
F.
Marchetti
, and
S.
Toscani
, “
Order-disorder transformation in RuBr3 and MoBr3: A two-dimensional ising model
,”
Chem. Mater.
16
,
3895
3903
(
2004
).
29.
E.
Philp
,
J.
Sloan
,
A. I.
Kirkland
,
R. R.
Meyer
,
S.
Friedrichs
,
J. L.
Hutchison
, and
M. L.
Green
, “
An encapsulated helical one-dimensional cobalt iodide nanostructure
,”
Nat. Mater.
2
,
788
791
(
2003
).
30.
R.
Kitaura
,
D.
Ogawa
,
k
Kobayashi
,
T.
Saito
,
S.
Ohshima
,
T.
Nakamura
,
H.
Yoshikawa
,
K.
Awaga
, and
H.
Shinohara
, “
High yield synthesis and characterization of the structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates
,”
Nano Res.
1
,
152
157
(
2008
).
31.
M. V.
Kharlamova
,
L. V.
Yashina
, and
A. V.
Lukashin
, “
Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides
,”
J. Mater. Sci.
48
,
8412
8419
(
2013
).
32.
M. V.
Kharlamova
,
L. V.
Yashina
,
A. A.
Eliseev
,
A. A.
Volykhov
,
V. S.
Neudachina
,
M. M.
Brzhezinskaya
,
T. S.
Zyubina
,
A. V.
Lukashin
, and
Y. D.
Tretyakov
, “
Single-walled carbon nanotubes filled with nickel halogenides: Atomic structure and doping effect
,”
Phys. Status Solidi B
249
,
2328
2332
(
2012
).
33.
X.
Tan
,
L.
Liu
,
H.
Xiang
,
G. F.
Du
,
A.
Lou
, and
H. H.
Fu
, “
One-dimensional transition metal dihalide nanowires as robust bipolar magnetic semiconductors
,”
Nanoscale
12
,
8942
8948
(
2020
).
34.
Z.
Guo
,
Q.
Chen
,
J.
Yuan
,
K.
Xia
,
X.
Wang
, and
J.
Sun
, “
Ferromagnetic semiconducting VI3 single-chain nanowire
,”
J. Phys. Chem. C
124
,
2096
2103
(
2020
).
35.
S. S.
Li
,
Y. P.
Wang
,
S. J.
Hu
,
D.
Chen
,
C. W.
Zhang
, and
S. S.
Yan
, “
Robust half-metallicity in transition metal tribromide nanowires
,”
Nanoscale
10
,
15545
15552
(
2018
).
36.
G.
Kresse
and
J.
Furthmuller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
37.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
38.
K. B. J. P.
Perdew
and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
39.
V. V.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
,
943
954
(
1991
).
40.
BIOVIA
, Dassault Systèmes, BIOVIA Material Studio, Release 2017, San Diego (Dassault Systèmes,
2017
).
41.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
42.
G.
Cheon
,
K. N.
Duerloo
,
A. D.
Sendek
,
C.
Porter
,
Y.
Chen
, and
E. J.
Reed
, “
Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures
,”
Nano Lett.
17
,
1915
1923
(
2017
).
43.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
44.
L.
Li
,
Z.
Chen
,
Y.
Hu
,
X.
Wang
,
T.
Zhang
,
W.
Chen
, and
Q.
Wang
, “
Single-layer single-crystalline SnSe nanosheets
,”
J. Am. Chem. Soc.
135
,
1213
1216
(
2013
).
45.
X.-H.
Ma
,
K.-H.
Cho
, and
Y.-M.
Sung
, “
Growth mechanism of vertically aligned SnSe nanosheets via physical vapour deposition
,”
CrystEngComm
16
,
5080
5086
(
2014
).
46.
H. O. H.
Churchill
,
G. J.
Salamo
,
S. Q.
Yu
,
T.
Hironaka
,
X.
Hu
,
J.
Stacy
, and
I.
Shih
, “
Toward single atom chains with exfoliated tellurium
,”
Nanoscale Res. Lett.
12
,
488
(
2017
).
47.
E.
Andharia
,
T. P.
Kaloni
,
G. J.
Salamo
,
S.-Q.
Yu
,
H. O. H.
Churchill
, and
S.
Barraza-Lopez
, “
Exfoliation energy, quasiparticle band structure, and excitonic properties of selenium and tellurium atomic chains
,”
Phys. Rev. B
98
,
035420
(
2018
).
48.
J.
Zhang
,
J.
Yang
,
L.
Lin
, and
JJi
Zhu
, “
An antiferromagnetic two-dimensional material: Chromium diiodides monolayer
,”
J. Semicond.
41
,
122502
(
2020
).
49.
N.
Liu
,
S.
Zhou
, and
J.
Zhao
, “
High-Curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates
,”
Phys. Rev. Mater.
4
,
094003
(
2020
).
50.
F.
Subhan
and
J.
Hong
, “
Magnetic anisotropy and Curie temperature of two-dimensional VI3 monolayer
,”
J. Phys.: Condens. Matter
32
,
245803
(
2020
).
51.
V. V.
Kulish
and
W.
Huang
, “
Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations
,”
J. Mater. Chem. C
5
,
8734
8741
(
2017
).
52.
X.
Hu
,
Y.
Zhao
,
X.
Shen
,
A. V.
Krasheninnikov
,
Z.
Chen
, and
L.
Sun
, “
Enhanced ferromagnetism and tunable magnetism in Fe3GeTe2 monolayer by strain engineering
,”
ACS Appl. Mater. Interfaces
12
,
26367
26373
(
2020
).
53.
I. V.
Krainov
,
J.
Klier
,
A. P.
Dmitriev
,
S.
Klyatskaya
,
M.
Ruben
,
W.
Wernsdorfer
, and
I. V.
Gornyi
, “
Giant magnetoresistance in carbon nanotubes with single-molecule magnets TbPc2
,”
ACS Nano
11
,
6868
6880
(
2017
).
54.
Z.
Ge
,
Q.
Zou
,
H.
Zhang
,
C.
Yan
,
D.
Agterberg
,
M.
Weinert
, and
L.
Li
, “
Superconductivity on edge: Evidence of a one-dimensional superconducting channel at the edges of single-layer FeTeSe antiferromagnetic nanoribbons
,”
ACS Nano
14
,
6539
6547
(
2020
).
55.
J. B.
Goodenough
, “
Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3
,”
Phys. Rev.
100
,
564
573
(
1955
).
56.
P. W.
Anderson
, “
New approach to the theory of superexchange interactions
,”
Phys. Rev.
115
,
2
13
(
1959
).
57.
J.
Kanamori
, “
Crystal distortion in magnetic compounds
,”
J. Appl. Phys.
31
,
S14
S23
(
1960
).

Supplementary Material

You do not currently have access to this content.