A wakeup scheme for ferroelectric thin Hf0.5Zr0.5O2 films is presented, based on a gradual switching approach using multiple short pulses with a voltage amplitude roughly equal to the coercive voltage. This enables the on-chip wakeup and switching operation of ferroelectric devices, such as ferroelectric tunnel junctions (FTJs), with identical pulses. After wakeup using alternating pulse trains, which gradually switch the film polarization, FTJ operation is demonstrated to be as effective as after “normal” wakeup, with bipolar pulses of an amplitude larger than the coercive voltage. In this case, the voltage applied during wakeup was reduced by 26%, thereby lowering the required operating power.

1.
T.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
, “
Ferroelectricity in hafnium oxide thin films
,”
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
F.
Ambriz-Vargas
,
G.
Kolhatkar
,
M.
Broyer
,
A.
Hadj-Youssef
,
R.
Nouar
,
A.
Sarkissian
,
R.
Thomas
,
C.
Gomez-Yáñez
,
M. A.
Gauthier
, and
A.
Ruediger
, “
A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction
,”
ACS Appl. Mater. Interfaces
9
,
13262
13268
(
2017
).
3.
M.
Trentzsch
,
S.
Flachowsky
,
R.
Richter
,
J.
Paul
,
B.
Reimer
,
D.
Utess
,
S.
Jansen
,
H.
Mulaosmanovic
,
S.
Müller
,
S.
Slesazeck
 et al, “
A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2016
), pp.
11
15
.
4.
E.
Covi
,
Q. T.
Duong
,
S.
Lancaster
,
V.
Havel
,
J.
Coignus
,
J.
Barbot
,
O.
Richter
,
P.
Klein
,
E.
Chicca
,
L.
Grenouillet
 et al, “
Ferroelectric tunneling junctions for edge computing
,” in
IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2021
), pp.
1
5
.
5.
V.
Deshpande
,
K. S.
Nair
,
M.
Holzer
,
S.
Banerjee
, and
C.
Dubourdieu
, “
CMOS back-end-of-line compatible ferroelectric tunnel junction devices
,”
Solid-State Electron.
186
,
108054
(
2021
).
6.
L.
Bégon-Lours
,
M.
Halter
,
D. D.
Pineda
,
Y.
Popoff
,
V.
Bragaglia
,
A. L.
Porta
,
D.
Jubin
,
J.
Fompeyrine
, and
B. J.
Offrein
, “
A BEOL compatible, 2-terminals, ferroelectric analog non-volatile memory
,” in
5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)
(
IEEE
,
2021
), pp.
1
3
.
7.
B.
Max
,
M.
Hoffmann
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Ferroelectric tunnel junctions based on ferroelectric-dielectric Hf0.5Zr0.5O2/A12O3 capacitor stacks
,” in
48th European Solid-State Device Research Conference (ESSDERC)
(
IEEE
,
2018
), pp.
142
145
.
8.
H.
Mulaosmanovic
,
T.
Mikolajick
, and
S.
Slesazeck
, “
Accumulative polarization reversal in nanoscale ferroelectric transistors
,”
ACS Appl. Mater. Interfaces
10
,
23997
24002
(
2018
).
9.
A. K.
Saha
,
K.
Ni
,
S.
Dutta
,
S.
Datta
, and
S.
Gupta
, “
Phase field modeling of domain dynamics and polarization accumulation in ferroelectric HZO
,”
Appl. Phys. Lett.
114
,
202903
(
2019
).
10.
S.
Zhukov
,
Y. A.
Genenko
,
O.
Hirsch
,
J.
Glaum
,
T.
Granzow
, and
H.
von Seggern
, “
Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism
,”
Phys. Rev. B
82
,
014109
(
2010
).
11.
S.
Yu
, “
Neuro-inspired computing with emerging nonvolatile memorys
,”
Proc. IEEE
106
,
260
285
(
2018
).
12.
H.
Mulaosmanovic
,
F.
Müller
,
M.
Lederer
,
T.
Ali
,
R.
Hoffmann
,
K.
Seidel
,
H.
Zhou
,
J.
Ocker
,
S.
Mueller
,
S.
Dünkel
 et al, “
Interplay between switching and retention in HfO2-based ferroelectric FETs
,”
IEEE Trans. Electron Devices
67
,
3466
3471
(
2020
).
13.
M.
Materano
,
P. D.
Lomenzo
,
H.
Mulaosmanovic
,
M.
Hoffmann
,
A.
Toriumi
,
T.
Mikolajick
, and
U.
Schroeder
, “
Polarization switching in thin doped HfO2 ferroelectric layers
,”
Appl. Phys. Lett.
117
,
262904
(
2020
).
14.
M.
Park
,
H.
Kim
,
Y.
Kim
,
T.
Moon
,
K.
Kim
,
Y.
Lee
,
S.
Hyun
, and
C.
Hwang
, “
Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films
,”
J. Mater. Chem. C
3
,
6291
6300
(
2015
).
15.
R.
Fontanini
,
J.
Barbot
,
M.
Segatto
,
S.
Lancaster
,
Q.
Duong
,
F.
Driussi
,
L.
Grenouillet
,
F.
Triozon
,
J.
Coignus
,
T.
Mikolajick
,
S.
Slesazeck
, and
D.
Esseni
, “
Polarization switching and interface charges in BEOL compatible ferroelectric tunnel junctions
,” in
IEEE 51st European Solid-State Device Research Conference (ESSDERC)
(
IEEE
,
2021
), pp.
255
258
.
16.
A. K.
Tagantsev
,
I.
Stolichnov
,
N.
Setter
,
J. S.
Cross
, and
M.
Tsukada
, “
Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films
,”
Phys. Rev. B
66
,
214109
(
2002
).
17.
S.
Boyn
,
J.
Grollier
,
G.
Lecerf
,
B.
Xu
,
N.
Locatelli
,
S.
Fusil
,
S.
Girod
,
C.
Carrétéro
,
K.
Garcia
,
S.
Xavier
 et al, “
Learning through ferroelectric domain dynamics in solid-state synapses
,”
Nat. Commun.
8
,
14736
(
2017
).
18.
H. W.
Park
,
S. D.
Hyun
,
I. S.
Lee
,
S. H.
Lee
,
Y. B.
Lee
,
M.
Oh
,
B. Y.
Kim
,
S. G.
Ryoo
, and
C. S.
Hwang
, “
Polarizing and depolarizing charge injection through a thin dielectric layer in a ferroelectric–dielectric bilayer
,”
Nanoscale
13
,
2556
2572
(
2021
).
19.
M.
Pešić
,
S.
Slesazeck
,
T.
Schenk
,
U.
Schroeder
, and
T.
Mikolajick
, “
Impact of charge trapping on the ferroelectric switching behavior of doped hfo2
,”
Phys. Status Solidi A
213
,
270
273
(
2016
).
20.
B.
Max
,
M.
Hoffmann
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions
,”
IEEE J. Electron Devices Soc.
7
,
1175
1181
(
2019
).
21.
H.
Mulaosmanovic
,
S.
Dünkel
,
M.
Trentzsch
,
S.
Beyer
,
E. T.
Breyer
,
T.
Mikolajick
, and
S.
Slesazeck
, “
Investigation of accumulative switching in ferroelectric FETs: Enabling universal modeling of the switching behavior
,”
IEEE Trans. Electron Devices
67
,
5804
5809
(
2020
).

Supplementary Material

You do not currently have access to this content.