The performance of x-ray free electron lasers and ultrafast electron diffraction experiments is largely dependent on the brightness of electron sources from photoinjectors. The maximum brightness from photoinjectors at a particular accelerating gradient is limited by the mean transverse energy (MTE) of electrons emitted from photocathodes. For high quantum efficiency (QE) cathodes like alkali-antimonide thin films, which are essential to mitigate the effects of non-linear photoemission on MTE, the smallest possible MTE and, hence, the highest possible brightness are limited by the nanoscale surface roughness and chemical inhomogeneity. In this work, we show that high QE Cs3Sb films grown on lattice-matched strontium titanate (STO) substrates have a factor of 4 smoother, chemically uniform surfaces compared to those traditionally grown on disordered Si surfaces. We perform simulations to calculate roughness induced MTE based on measured topographical and surface-potential variations on the Cs3Sb films grown on STO and show that these variations are small enough to have no consequential impact on the MTE and, hence, the brightness.

1.
M.
Ferrario
, “
Overview of FEL injectors
,” in
Proceedings of EPAC
, Edinburgh, Scotland,
2015
.
2.
J. B.
Rosenzweig
,
N.
Majernik
,
R. R.
Robles
,
G.
Andonian
,
O.
Camacho
,
A.
Fukasawa
,
A.
Kogar
,
G.
Lawler
,
J.
Miao
,
P.
Musumeci
,
B.
Naranjo
,
Y.
Sakai
,
R.
Candler
,
B.
Pound
,
C.
Pellegrini
,
C.
Emma
,
A.
Halavanau
,
J.
Hastings
,
Z.
Li
,
M.
Nasr
,
S.
Tantawi
,
P.
Anisimov
,
B.
Carlsten
,
F.
Krawczyk
,
E.
Simakov
,
L.
Faillace
,
M.
Ferrario
,
B.
Spataro
,
S.
Karkare
,
J. M.
Maxson
,
Y.
Ma
,
J.
Wurtele
,
A.
Murokh
,
A.
Zholents
,
A.
Cianchi
,
D.
Cocco
, and
S. B.
van der Geer
, “
An ultra-compact x-ray free-electron laser
,”
New J. Phys.
22
,
093067
(
2020
).
3.
P.
Musumeci
,
J. T.
Moody
,
C.
Scoby
,
M. S.
Gutierrez
,
H. A.
Bender
, and
N. S.
Wilcox
, “
High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector
,”
Rev. Sci. Instrum.
81
,
013306
(
2010
).
4.
P.
Musumeci
,
J. G.
Navarro
,
J. B.
Rosenzweig
,
L.
Cultrera
,
I. V.
Bazarov
,
J. M.
Maxson
,
S.
Karkare
, and
H. A.
Padmore
, “
Advances in bright electron sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
907
,
209
(
2018
).
5.
M.
Gordon
,
S. B.
van der Geer
,
J. M.
Maxson
, and
Y. K.
Kim
, “
Point-to-point coulomb effects in high brightness photoelectron beam lines for ultrafast electron diffraction
,”
Phys. Rev. Accel. Beams
24
,
084202
(
2021
).
6.
J. M.
Maxson
,
I. V.
Bazarov
,
W.
Wan
,
H. A.
Padmore
, and
C. E.
Coleman-Smith
, “
Fundamental photoemission brightness limit from disorder induced heating
,”
Phys. Rev. Accel. Beams
15
,
103024
(
2013
).
7.
D. H.
Dowell
and
J. F.
Schmerge
, “
Quantum efficiency and thermal emittance of metal photocathodes
,”
Phys. Rev. ST Accel. Beams
12
,
074201
(
2009
).
8.
T.
Vecchione
,
D. H.
Dowell
,
W.
Wan
,
J.
Feng
, and
H.
Padmore
, “
Quantum efficiency and transverse momentum from metals
,” in
Proceedings of FEL 2013
,
2013
.
9.
J.
Feng
,
J.
Nasiatka
,
W.
Wan
,
S.
Karkare
,
J.
Smedley
, and
H. A.
Padmore
, “
Thermal limit to the intrinsic emittance from metal photocathodes
,”
Appl. Phys. Lett.
107
,
134101
(
2015
).
10.
S.
Karkare
,
G.
Adhikari
,
W. A.
Schroeder
,
J. K.
Nangoi
,
T.
Arias
,
J. M.
Maxson
, and
H. A.
Padmore
, “
Ultracold electrons via near-threshold photoemission from single-crystal Cu(100)
,”
Phys. Rev. Lett.
125
,
054801
(
2020
).
11.
J. M.
Maxson
,
P.
Musumeci
,
L.
Cultrera
,
S.
Karkare
, and
H. A.
Padmore
, “
Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
865
,
99
(
2017
).
12.
J.
Bae
,
L.
Cultrera
,
I. V.
Bazarov
,
J. M.
Maxson
,
S.
Karkare
,
H. A.
Padmore
,
P.
Musumeci
, and
X. L.
Shen
, “
Multi-photon photoemission and ultrafast electron heating in Cu photocathodes
,” in
Proceedings of the 9th International Particle Accelerator Conference
, Vancouver, BC, TUPML026,
2018
.
13.
C. J.
Knill
,
H. A.
Padmore
, and
S.
Karkare
, “
Near-threshold nonlinear photoemission from Cu(100)
,” in
Proceedings of the 9th International Particle Accelerator Conference
,
2021
.
14.
B.
Dunham
,
J.
Barley
,
A.
Bartnik
,
I. V.
Bazarov
,
L.
Cultrera
,
J.
Dobbins
,
G.
Hoffstaetter
,
B.
Johnson
,
R.
Kaplan
,
S.
Karkare
,
V.
Kostroun
,
Y.
Li
,
M.
Liepe
,
X.
Liu
,
F.
Loehl
,
J. M.
Maxson
,
P.
Quigley
,
J.
Reilly
,
D.
Rice
,
D.
Sabol
,
E.
Smith
,
K.
Smolenski
,
M.
Tigner
,
V.
Vesherevich
,
D.
Widger
, and
Z.
Zhao
, “
Record high-average current from a high-brightness photoinjector
,”
Appl. Phys. Lett.
102
,
034105
(
2013
).
15.
M. A. H.
Schmeißer
,
S.
Mistry
,
H.
Kirschner
,
S.
Schubert
,
A.
Jankowiak
,
T.
Kamps
, and
J.
Kuhn
, “
Towards the operation of Cs-K-Sb photocathodes in superconducting rf photoinjectors
,”
Phys. Rev. Accel. Beams
21
,
113401
(
2018
).
16.
T.
Vecchione
,
I.
Ben-Zvi
,
D. H.
Dowell
,
J.
Feng
,
T.
Rao
,
J.
Smedley
,
W.
Wan
, and
H. A.
Padmore
, “
A low emittance and high efficiency visible light photocathode for high brightness accelerator-based x-ray light sources
,”
Appl. Phys. Lett.
99
,
034103
(
2011
).
17.
L.
Cultrera
,
S.
Karkare
,
H.
Lee
,
X.
Liu
,
I. V.
Bazarov
, and
B.
Dunham
, “
Cold electron beams from cryocooled, alkali antimonide photocathodes
,”
Phys. Rev. Spec. Top.—Accel. Beams.
18
,
113401
(
2015
).
18.
J.
Feng
,
S.
Karkare
,
J.
Nasiatka
,
S.
Schubert
,
J.
Smedley
, and
H. A.
Padmore
, “
Near atomically smooth alkali antimonide photocathode thin films
,”
J. Appl. Phys.
121
,
044904
(
2017
).
19.
S.
Karkare
and
I. V.
Bazarov
, “
Effects of surface nonuniformities on the mean transverse energy from photocathodes
,”
Phys. Rev. Appl.
4
,
024015
(
2015
).
20.
G. S.
Gevorkyan
,
S.
Karkare
,
S.
Emamian
,
I. V.
Bazarov
, and
H. A.
Padmore
, “
Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes
,”
Phys. Rev. Accel. Beams
21
,
093401
(
2018
).
21.
S.
Schubert
,
M.
Ruiz-Oses
,
I.
Ben-Zvi
,
T.
Kamps
,
X.
Liang
,
E.
Muller
,
K.
Mueller
,
H. A.
Padmore
,
T.
Rao
,
X.
Tong
,
T.
Vecchione
, and
J.
Smedley
, “
Bi-alkali antimonide photocathodes for high brightness accelerators
,”
Appl. Mater.
1
,
032119
(
2013
).
22.
A.
Galdi
,
J.
Balajka
,
W. J. I.
DeBenedetti
,
L.
Cultrera
,
I. V.
Bazarov
,
M. A.
Hines
, and
J. M.
Maxson
, “
Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates
,”
Appl. Phys. Lett.
118
,
244101
(
2021
).
23.
J. T.
Paul
,
A.
Galdi
,
C.
Parzyck
,
K. M.
Shen
,
J. M.
Maxson
, and
R. G.
Hennig
, “
Computational synthesis of substrates by crystal cleavage
,”
npj Comput. Mater.
7
,
147
(
2021
).
24.
K.
Mathew
,
A. K.
Singh
,
J. J.
Gabriel
,
K.
Choudhary
,
S. B.
Sinnott
,
A. V.
Davydov
,
F.
Tavazza
, and
R. G.
Hennig
, “
MPinterfaces: A materials project based Python tool for high-throughput computational screening of interfacial systems
,”
Comput. Mater. Sci.
122
,
183
190
(
2016
).
25.
See https://www.mtixtl.com/ for Si and STO substrates.
26.
See https://www.alfa.com/en/ for pure Sb pellets.
27.
See https://www.saesgetters.com/ for Cs sources.
29.
M.
Hagino
and
T.
Takahashi
, “
Thickness of Cs-Sb films relative to the original Sb films
,”
J. Appl. Phys.
37
,
3741
(
1966
).
30.
C. T.
Parzyck
,
A.
Galdi
,
J. K.
Nangoi
,
W. J. I.
DeBenedetti
,
J.
Balajka
,
B. D.
Faeth
,
H.
Paik
,
C.
Hu
,
T. A.
Arias
,
M. A.
Hines
,
D. G.
Schlom
,
K. M.
Shen
, and
J. M.
Maxson
, “
A single-crystal alkali antimonide photocathode: High efficiency in the ultra-thin limit
,” arXiv:2112.14366 (
2021
).
32.
W.
Melitz
,
J.
Shena
,
A. C.
Kummel
, and
S.
Lee
, “
Kelvin probe force microscopy and its application
,”
Surf. Sci. Rep.
66
,
1
27
(
2011
).
You do not currently have access to this content.