Two type-I clathrates were synthesized by introducing Ga into the framework of the Ba8Cu16P30 type-I clathrate. The introduction of minute amounts of Ga, 1.9% Ga/Mtotal (where Mtotal = Cu + Ga), resulted in the disturbance of the completely ordered Pbcn superstructure of Ba8Cu16P30. Ba8Cu15.43(2)Ga0.3P30.26(3) crystallizes in a partially ordered orthorhombic Pmna clathrate-I superstructure with five out of 15 framework sites being jointly occupied by metal+phosphorus. Increasing the Ga content resulted in all framework sites being occupied by metal + phosphorus in the archetype cubic Pm3¯n clathrate-I crystal structure of Ba8Cu14.5(3)Ga1.3P30.2(4) with 8.2% Ga/Mtotal. A combination of energy dispersive x-ray spectroscopy, inductively coupled plasma mass spectroscopy, and single crystal x-ray diffraction was used to determine the structures alongside the compositions. The positional disorder was verified by 31P solid state NMR spectroscopy. Characterization of the transport properties indicated that the Ga-substituted samples exhibit higher Seebeck coefficients and electrical resistivities compared to its pristine counterpart, in line with the expected reduction of the hole concentration due to Ga/Cu substitution. Moderate improvements in the thermoelectric power factor and overall figure-of-merit were observed for samples with 6.9% and 3.8% Ga/Mtotal as compared to those for the pristine Ba8Cu16P30 clathrate. Band structure calculations shed light on how Ga substitution affects the electronic structure and thermoelectric properties of studied clathrates.

1.
J.-A.
Dolyniuk
,
B.
Owens-Baird
,
J.
Wang
,
J. V.
Zaikina
, and
K.
Kovnir
,
Mater. Sci. Eng., R
108
,
1
(
2016
).
2.
T.
Takabatake
,
K.
Suekuni
,
T.
Nakayama
, and
E.
Kaneshita
,
Rev. Mod. Phys.
86
,
669
(
2014
).
3.
M.
Christensen
,
S.
Johnsen
, and
B. B.
Iversen
,
Dalton Trans.
39
,
978
(
2010
).
4.
J.
Fulmer
,
O. I.
Lebedev
,
V. V.
Roddatis
,
D. C.
Kaseman
,
S.
Sen
,
J.-A.
Dolyniuk
,
K.
Lee
,
A. V.
Olenev
, and
K.
Kovnir
,
J. Am. Chem. Soc.
135
,
12313
(
2013
).
5.
J.
Dolyniuk
,
J.
Wang
,
K.
Lee
, and
K.
Kovnir
,
Chem. Mater.
27
,
4476
(
2015
).
6.
S.
Bobev
and
S. C.
Sevov
,
J. Solid State Chem.
153
,
92
(
2000
).
7.
K. A.
Kovnir
and
A. V.
Shevelkov
,
Russ. Chem. Rev.
73
,
923
(
2004
).
8.
A. V.
Shevelkov
and
K.
Kovnir
, “
Zintl clathrates
,” in
Zintl Phases: Structure and Bonding
, edited by T. Fässler (Springer, Berlin, Heidelberg, 2010), Vol 139.
9.
B. B.
Iversen
,
A. E. C.
Palmqvist
,
D. E.
Cox
,
G. S.
Nolas
,
G. D.
Stucky
,
N. P.
Blake
, and
H.
Metiu
,
J. Solid State Chem.
149
,
455
(
2000
).
10.
H.
Kleinke
,
Chem. Mater.
22
,
604
(
2010
).
11.
J.
Wang
,
O. I.
Lebedev
,
K.
Lee
,
J.-A.
Dolyniuk
,
P.
Klavins
,
S.
Bux
, and
K.
Kovnir
,
Chem. Sci.
8
,
8030
(
2017
).
12.
J.
Wang
,
J.-A.
Dolyniuk
, and
K.
Kovnir
,
Acc. Chem. Res.
51
,
31
(
2018
).
13.
J.
Duenner
and
A.
Mewis
,
Z. Anorg. Allg. Chem.
621
,
191
(
1995
).
14.
J.
Dolyniuk
,
P. S.
Whitfield
,
K.
Lee
,
O. I.
Lebedev
, and
K.
Kovnir
,
Chem. Sci.
8
,
3650
(
2017
).
15.
J.-A.
Dolyniuk
,
J. V.
Zaikina
,
D. C.
Kaseman
,
S.
Sen
, and
K.
Kovnir
,
Angew. Chem., Int. Ed.
56
,
2418
(
2017
).
16.
D.
Huo
,
T.
Sasakawa
,
Y.
Muro
, and
T.
Takabatake
,
Appl. Phys. Lett.
82
,
2640
(
2003
).
17.
J.-A.
Dolyniuk
,
J.
Wang
,
M. A. T.
Marple
,
S.
Sen
,
Y.
Cheng
,
A. J.
Ramirez-Cuesta
, and
K.
Kovnir
,
Chem. Mater.
30
,
3419
(
2018
).
18.
J.-A.
Dolyniuk
and
K.
Kovnir
,
Materials
9
,
692
(
2016
).
19.
J.
Wang
,
Y.
He
,
N. E.
Mordvinova
,
O. I.
Lebedev
, and
K.
Kovnir
,
Chem
4
,
1465
(
2018
).
20.
K.
Kovnir
,
U.
Stockert
,
S.
Budnyk
,
Y.
Prots
,
M.
Baitinger
,
S.
Paschen
,
A. V.
Shevelkov
, and
Y.
Grin
,
Inorg. Chem.
50
,
10387
(
2011
).
21.
B.
Owens-Baird
,
J.
Wang
,
S. G.
Wang
,
Y.-S.
Chen
,
S.
Lee
,
D.
Donadio
, and
K.
Kovnir
,
J. Am. Chem. Soc.
142
,
2031
(
2020
).
22.
A.
Saramat
,
G.
Svensson
,
A. E. C.
Palmqvist
,
C.
Stiewe
,
E.
Mueller
,
D.
Platzek
,
S. G. K.
Williams
,
D. M.
Rowe
,
J. D.
Bryan
, and
G. D.
Stucky
,
J. Appl. Phys.
99
,
023708
(
2006
).
23.
H.
Anno
,
H.
Yamada
,
T.
Nakabayashi
,
M.
Hokazono
, and
R.
Shirataki
,
J. Phys.: Conf. Ser.
379
,
012007
(
2012
).
24.
Y.
Dong
,
X.
Ding
,
X.
Yan
,
L.
Zhang
,
T.
Ju
,
C.
Liu
,
P.
Rogl
, and
S.
Paschen
,
Materials
12
,
237
(
2019
).
25.
X. H.
Zhang
,
Q.
Yuan
,
J. C.
Han
,
J. G.
Zhao
,
J. K.
Jian
,
Z. H.
Zhang
, and
B.
Song
,
Appl. Phys. Lett.
103
,
022405
(
2013
).
26.
B.
Belgacem
,
M.
Pasturel
,
O.
Tougait
,
M.
Potel
,
T.
Roisnel
,
R.
Ben Hassen
, and
H.
Noël
,
J. Alloys Compd.
478
,
89
(
2009
).
27.
J.
Wang
,
D.
Kaseman
,
K.
Lee
,
S.
Sen
, and
K.
Kovnir
,
Chem. Mater.
28
,
4741
(
2016
).
28.
A. A.
Sirusi
and
J.
Ross
,
Annu. Rep. NMR Spectrosc.
92
,
137
(
2017
).
29.
J.-H.
Chen
,
A. A.
Sirusi
,
X.
Zheng
,
S. Y.
Rodriguez
, and
J. H.
Ross
, Jr.
,
J. Alloys Compd.
593
,
261
(
2014
).
30.
T. M.
Duncan
,
R. F.
Karlicek
, Jr.
,
W. A.
Bonner
, and
F. A.
Thiel
,
J. Phys. Chem. Solids
45
,
389
(
1984
).
31.
G. S.
Nolas
,
The Physics and Chemistry of Inorganic Clathrates
, Springer Series in Materials Science (Springer, Philadelphia, PA,
2014
), Vol. 199.
32.
G. S.
Nolas
,
J. L.
Cohn
,
J. S.
Dyck
,
C.
Uher
, and
J.
Yang
,
Phys. Rev. B
65
,
165201
(
2002
).
33.
G. S.
Nolas
,
B. C.
Chakoumakos
,
B.
Mahieu
,
G. J.
Long
, and
T. J. R.
Weakley
,
Chem. Mater.
12
,
1947
(
2000
).

Supplementary Material

You do not currently have access to this content.