For systems that require complete metallic enclosures (e.g., containment buildings for nuclear reactors), it is impossible to access interior sensors and equipment using standard electromagnetic techniques. A viable way to communicate and supply power through metallic barriers is the use of elastic waves and ultrasonic transducers, introducing several design challenges that must be addressed. Specifically, the use of multiple communication channels on the same enclosure introduces an additional mechanism for signal crosstalk between channels: guided waves propagating in the barrier between channels. This work numerically and experimentally investigates a machined phononic crystal to block MHz Lamb wave propagation between ultrasonic communication channels, greatly reducing wave propagation and the resulting crosstalk voltage. Blind grooves are machined into one or both sides of a metallic barrier to introduce a periodic unit cell, greatly altering the guided wave dispersion in the barrier. Numerical simulations are used to determine a set of groove geometries for testing, and experiments were performed to characterize the wave-blocking performance of each design. The best-performing design was tested using piezoelectric transducers bonded to the barrier, showing a 14.4 dB reduction in crosstalk voltage. The proposed periodic grooving method is a promising technique for completely isolating ultrasonic power/data transfer systems operating in a narrow frequency range.

1.
G. A.
Covic
and
J. T.
Boys
, “
Inductive power transfer
,”
Proc. IEEE
101
,
1276
1289
(
2013
).
2.
Y.
Hu
,
X.
Zhang
,
J.
Yang
, and
Q.
Jiang
, “
Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
773
781
(
2003
).
3.
H.
Hu
,
Y.
Hu
,
C.
Chen
, and
J.
Wang
, “
A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
2312
2319
(
2008
).
4.
M.
Kluge
,
T.
Becker
,
J.
Schalk
, and
T.
Otterpohl
, “
Remote acoustic powering and data transmission for sensors inside of conductive envelopes
,” in
Sensors, 2008 IEEE
(
IEEE
,
2008
), pp.
41
44
.
5.
D. J.
Graham
,
J. A.
Neasham
, and
B. S.
Sharif
, “
Investigation of methods for data communication and power delivery through metals
,”
IEEE Trans. Ind. Electron.
58
,
4972
4980
(
2011
).
6.
A.
Denisov
and
E.
Yeatman
, “
Ultrasonic vs. inductive power delivery for miniature biomedical implants
,” in
2010 International Conference on Body Sensor Networks
(
IEEE
,
2010
), pp.
84
89
.
7.
J.
Charthad
,
M. J.
Weber
,
T. C.
Chang
, and
A.
Arbabian
, “
A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link
,”
IEEE J. Solid-State Circuits
50
,
1741
1753
(
2015
).
8.
H.
Basaeri
,
D. B.
Christensen
, and
S.
Roundy
, “
A review of acoustic power transfer for bio-medical implants
,”
Smart Mater. Struct.
25
,
123001
(
2016
).
9.
H.
Basaeri
,
Y.
Yu
,
D.
Young
, and
S.
Roundy
, “
A MEMS-scale ultrasonic power receiver for biomedical implants
,”
IEEE Sens. Lett.
3
,
1
4
(
2019
).
10.
R.
Hinchet
,
H.-J.
Yoon
,
H.
Ryu
,
M.-K.
Kim
,
E.-K.
Choi
,
D.-S.
Kim
, and
S.-W.
Kim
, “
Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
,”
Science
365
,
491
494
(
2019
).
11.
T. J.
Lawry
,
K. R.
Wilt
,
J. D.
Ashdown
,
H. A.
Scarton
, and
G. J.
Saulnier
, “
A high-performance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
194
203
(
2012
).
12.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
, “
Acoustic band structure of periodic elastic composites
,”
Phys. Rev. Lett.
71
,
2022
(
1993
).
13.
J.
Li
and
C. T.
Chan
, “
Double-negative acoustic metamaterial
,”
Phys. Rev. E
70
,
055602
(
2004
).
14.
S. A.
Cummer
,
B.-I.
Popa
,
D.
Schurig
,
D. R.
Smith
,
J.
Pendry
,
M.
Rahm
, and
A.
Starr
, “
Scattering theory derivation of a 3D acoustic cloaking shell
,”
Phys. Rev. Lett.
100
,
024301
(
2008
).
15.
A. N.
Norris
and
A. L.
Shuvalov
, “
Elastic cloaking theory
,”
Wave Motion
48
,
525
538
(
2011
).
16.
H.
Zhu
and
F.
Semperlotti
, “
Metamaterial based embedded acoustic filters for structural applications
,”
AIP Adv.
3
,
092121
(
2013
).
17.
B.-I.
Popa
and
S. A.
Cummer
, “
Non-reciprocal and highly nonlinear active acoustic metamaterials
,”
Nat. Commun.
5
,
3398
(
2014
).
18.
H.
Zhu
and
F.
Semperlotti
, “
Phononic thin plates with embedded acoustic black holes
,”
Phys. Rev. B
91
,
104304
(
2015
).
19.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
, “
Controlling sound with acoustic metamaterials
,”
Nat. Rev. Mater.
1
,
16001
(
2016
).
20.
S.
Babaee
,
J. T.
Overvelde
,
E. R.
Chen
,
V.
Tournat
, and
K.
Bertoldi
, “
Reconfigurable origami-inspired acoustic waveguides
,”
Sci. Adv.
2
,
e1601019
(
2016
).
21.
O. R.
Bilal
,
A.
Foehr
, and
C.
Daraio
, “
Reprogrammable phononic metasurfaces
,”
Adv. Mater.
29
,
1700628
(
2017
).
22.
J.
Gao
,
X.-Y.
Zou
,
J.-C.
Cheng
, and
B.
Li
, “
Band gaps of lower-order Lamb wave in thin plate with one-dimensional phononic crystal layer: Effect of substrate
,”
Appl. Phys. Lett.
92
,
023510
(
2008
).
23.
Y.
Cheng
,
X.
Liu
, and
D.
Wu
, “
Band structure of a phononic crystal plate in the form of a staggered-layer structure
,”
J. Appl. Phys.
109
,
064904
(
2011
).
24.
H.-B.
Zhang
,
J.-J.
Chen
, and
X.
Han
, “
Lamb wave band gaps in a homogenous plate with periodic tapered surface
,”
J. Appl. Phys.
112
,
054503
(
2012
).
25.
P.
Wang
,
T.-N.
Chen
,
K.-P.
Yu
, and
X.-P.
Wang
, “
Lamb wave band gaps in a double-sided phononic plate
,”
J. Appl. Phys.
113
,
053509
(
2013
).
26.
Y.-F.
Wang
,
T.-T.
Wang
,
J.-P.
Liu
,
Y.-S.
Wang
, and
V.
Laude
, “
Guiding and splitting Lamb waves in coupled-resonator elastic waveguides
,”
Compos. Struct.
206
,
588
593
(
2018
).
You do not currently have access to this content.