The ability to resolve the polarization of light with on-chip devices represents an urgent problem in optoelectronics. The detectors with polarization resolution demonstrated so far mostly require multiple oriented detectors or movable external polarizers. Here, we experimentally demonstrate the feasibility to resolve the polarization of mid-infrared light with a single chemical-vapor-deposited graphene-channel device with dissimilar metal contacts. This possibility stems from an unusual dependence of photoresponse at graphene–metal junctions on gate voltage and polarization angle. Namely, there exist certain gate voltages providing the polarization-insensitive signal; operation at these voltages can be used for power calibration of the detector. At other gate voltages, the detector features very strong polarization sensitivity, with the ratio of signals for two orthogonal polarizations reaching 10. Operation at these voltages can provide information about polarization angles, after the power calibration. We show that such unusual gate- and polarization-dependence of photosignal can appear upon competition of isotropic and anisotropic photovoltage generation pathways and discuss the possible physical candidates.

1.
S.-S.
Lin
,
K. M.
Yemelyanov
,
E. N.
Pugh
, and
N.
Engheta
, “
Separation and contrast enhancement of overlapping cast shadow components using polarization
,”
Opt. Express
14
,
7099
7108
(
2006
).
2.
F.
Snik
and
C. U.
Keller
, “
Astronomical polarimetry: Polarized views of stars and planets
,”
Planets Stars Stellar Syst.
2
,
175
(
2013
).
3.
Y.
Wang
,
C.
Yang
,
Y.
Wang
, and
N.
Chi
, “
Gigabit polarization division multiplexing in visible light communication
,”
Opt. Lett.
39
,
1823
1826
(
2014
).
4.
G.
Xavier
,
G. V.
de Faria
,
G.
Temporão
, and
J.
Von der Weid
, “
Full polarization control for fiber optical quantum communication systems using polarization encoding
,”
Opt. Express
16
,
1867
1873
(
2008
).
5.
W.
Ran
,
Z.
Ren
,
P.
Wang
,
Y.
Yan
,
K.
Zhao
,
L.
Li
,
Z.
Li
,
L.
Wang
,
J.
Yang
,
Z.
Wei
,
Z.
Lou
, and
G.
Shen
, “
Integrated polarization-sensitive amplification system for digital information transmission
,”
Nat. Commun.
12
,
6476
(
2021
).
6.
Z.
Zhou
,
M.
Long
,
L.
Pan
,
X.
Wang
,
M.
Zhong
,
M.
Blei
,
J.
Wang
,
J.
Fang
,
S.
Tongay
,
W.
Hu
,
J.
Li
, and
Z.
Wei
, “
Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs
,”
ACS Nano
12
,
12416
12423
(
2018
).
7.
J.
Zhong
,
J.
Yu
,
L.
Cao
,
C.
Zeng
,
J.
Ding
,
C.
Cong
,
Z.
Liu
, and
Y.
Liu
, “
High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet
,”
Nano Res.
13
,
1780
1786
(
2020
).
8.
X.
Tian
and
Y.
Liu
, “
Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector
,”
J. Semicond.
42
,
032001
(
2021
).
9.
L.
Tong
,
X.
Huang
,
P.
Wang
,
L.
Ye
,
M.
Peng
,
L.
An
,
Q.
Sun
,
Y.
Zhang
,
G.
Yang
,
Z.
Li
,
F.
Zhong
,
F.
Wang
,
Y.
Wang
,
M.
Motlag
,
W.
Wu
,
G. J.
Cheng
, and
W.
Hu
, “
Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature
,”
Nat. Commun.
11
,
2308
(
2020
).
10.
M.
Jestl
,
I.
Maran
,
A.
Köck
,
W.
Beinstingl
, and
E.
Gornik
, “
Polarization-sensitive surface plasmon Schottky detectors
,”
Opt. Lett.
14
,
719
(
1989
).
11.
T.
Antoni
,
A.
Nedelcu
,
X.
Marcadet
,
H.
Facoetti
, and
V.
Berger
, “
High contrast polarization sensitive quantum well infrared photodetectors
,”
Appl. Phys. Lett.
90
,
201107
(
2007
).
12.
J.
Wei
,
Y.
Li
,
L.
Wang
,
W.
Liao
,
B.
Dong
,
C.
Xu
,
C.
Zhu
,
K.-W.
Ang
,
C.-W.
Qiu
, and
C.
Lee
, “
Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection
,”
Nat. Commun.
11
,
6404
(
2020
).
13.
J.
Wei
,
C.
Xu
,
B.
Dong
,
C.-W.
Qiu
, and
C.
Lee
, “
Mid-infrared semimetal polarization detectors with configurable polarity transition
,”
Nat. Photonics
15
,
614
621
(
2021
).
14.
E.
Mohammadi
and
N.
Behdad
, “
A wide dynamic range polarization sensing long wave infrared detector
,”
Sci. Rep.
7
,
17475
(
2017
).
15.
H.
Park
and
K. B.
Crozier
, “
Elliptical silicon nanowire photodetectors for polarization-resolved imaging
,”
Opt. Express
23
,
7209
(
2015
).
16.
K.
Peng
,
D.
Jevtics
,
F.
Zhang
,
S.
Sterzl
,
D. A.
Damry
,
M. U.
Rothmann
,
B.
Guilhabert
,
M. J.
Strain
,
H. H.
Tan
,
L. M.
Herz
,
L.
Fu
,
M. D.
Dawson
,
A.
Hurtado
,
C.
Jagadish
, and
M. B.
Johnston
, “
Three-dimensional cross-nanowire networks recover full terahertz state
,”
Science
368
,
510
513
(
2020
).
17.
J.
Bullock
,
M.
Amani
,
J.
Cho
,
Y.-Z.
Chen
,
G. H.
Ahn
,
V.
Adinolfi
,
V. R.
Shrestha
,
Y.
Gao
,
K. B.
Crozier
,
Y.-L.
Chueh
, and
A.
Javey
, “
Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature
,”
Nat. Photonics
12
,
601
607
(
2018
).
18.
J. C. W.
Song
,
M. S.
Rudner
,
C. M.
Marcus
, and
L. S.
Levitov
, “
Hot carrier transport and photocurrent response in graphene
,”
Nano Lett.
11
,
4688
4692
(
2011
).
19.
K. J.
Tielrooij
,
M.
Massicotte
,
L.
Piatkowski
,
A.
Woessner
,
Q.
Ma
,
P.
Jarillo-Herrero
,
N. F.
van Hulst
, and
F. H. L.
Koppens
, “
Hot-carrier photocurrent effects at graphene–metal interfaces
,”
J. Phys.: Condens. Matter
27
,
164207
(
2015
).
20.
T. J.
Echtermeyer
,
P. S.
Nene
,
M.
Trushin
,
R. V.
Gorbachev
,
A. L.
Eiden
,
S.
Milana
,
Z.
Sun
,
J.
Schliemann
,
E.
Lidorikis
,
K. S.
Novoselov
, and
A. C.
Ferrari
, “
Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors
,”
Nano Lett.
14
,
3733
3742
(
2014
).
21.
F.
Xia
,
T.
Mueller
,
Y-m.
Lin
,
A.
Valdes-Garcia
, and
P.
Avouris
, “
Ultrafast graphene photodetector
,”
Nat. Nanotechnol.
4
,
839
843
(
2009
).
22.
T.
Mueller
,
F.
Xia
, and
P.
Avouris
, “
Graphene photodetectors for high-speed optical communications
,”
Nat. Photonics
4
,
297
301
(
2010
).
23.
V.
Silkin
and
D.
Svintsov
, “
Plasmonic drag photocurrent in graphene at extreme nonlocality
,”
Phys. Rev. B
104
,
155438
(
2021
).
24.
D. A.
Bandurin
,
D.
Svintsov
,
I.
Gayduchenko
,
S. G.
Xu
,
A.
Principi
,
M.
Moskotin
,
I.
Tretyakov
,
D.
Yagodkin
,
S.
Zhukov
,
T.
Taniguchi
,
K.
Watanabe
,
I. V.
Grigorieva
,
M.
Polini
,
G. N.
Goltsman
,
A. K.
Geim
, and
G.
Fedorov
, “
Resonant terahertz detection using graphene plasmons
,”
Nat. Commun.
9
,
5392
(
2018
).
25.
S.
Candussio
,
M. V.
Durnev
,
S. A.
Tarasenko
,
J.
Yin
,
J.
Keil
,
Y.
Yang
,
S.-K.
Son
,
A.
Mishchenko
,
H.
Plank
,
V. V.
Bel'kov
,
S.
Slizovskiy
,
V.
Fal'ko
, and
S. D.
Ganichev
, “
Edge photocurrent driven by terahertz electric field in bilayer graphene
,”
Phys. Rev. B
102
,
045406
(
2020
).
26.
J.
Karch
,
C.
Drexler
,
P.
Olbrich
,
M.
Fehrenbacher
,
M.
Hirmer
,
M. M.
Glazov
,
S. A.
Tarasenko
,
E. L.
Ivchenko
,
B.
Birkner
,
J.
Eroms
,
D.
Weiss
,
R.
Yakimova
,
S.
Lara-Avila
,
S.
Kubatkin
,
M.
Ostler
,
T.
Seyller
, and
S. D.
Ganichev
, “
Terahertz radiation driven chiral edge currents in graphene
,”
Phys. Rev. Lett.
107
,
276601
(
2011
).
27.
X.
Cai
,
A. B.
Sushkov
,
R. J.
Suess
,
M. M.
Jadidi
,
G. S.
Jenkins
,
L. O.
Nyakiti
,
R. L.
Myers-Ward
,
S.
Li
,
J.
Yan
,
D. K.
Gaskill
,
T. E.
Murphy
,
H. D.
Drew
, and
M. S.
Fuhrer
, “
Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene
,”
Nat. Nanotechnol.
9
,
814
819
(
2014
).
28.
I. A.
Gayduchenko
,
G. E.
Fedorov
,
M. V.
Moskotin
,
D. I.
Yagodkin
,
S. V.
Seliverstov
,
G. N.
Goltsman
,
A. Y.
Kuntsevich
,
M. G.
Rybin
,
E. D.
Obraztsova
,
V. G.
Leiman
,
M. S.
Shur
,
T.
Otsuji
, and
V. I.
Ryzhii
, “
Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices
,”
Nanotechnology
29
,
245204
(
2018
).
29.
M.
Badioli
,
A.
Woessner
,
K. J.
Tielrooij
,
S.
Nanot
,
G.
Navickaite
,
T.
Stauber
,
F. J.
García De Abajo
, and
F. H.
Koppens
, “
Phonon-mediated mid-infrared photoresponse of graphene
,”
Nano Lett.
14
,
6374
6381
(
2014
).
30.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
V. M.
Karpan
,
J.
van den Brink
, and
P. J.
Kelly
, “
Doping graphene with metal contacts
,”
Phys. Rev. Lett.
101
,
026803
(
2008
).
31.
A.
Sommerfeld
, “
Mathematische theorie der diffraction
,”
Math. Ann.
47
,
317
374
(
1896
).
32.
E.
Nikulin
,
D.
Mylnikov
,
D.
Bandurin
, and
D.
Svintsov
, “
Edge diffraction, plasmon launching, and universal absorption enhancement in two-dimensional junctions
,”
Phys. Rev. B
103
,
085306
(
2021
).

Supplementary Material

You do not currently have access to this content.