Phase change materials, such as vanadium dioxide (VO2) and Titanium dioxide (Ti2O3) have received extensive attention because of the dramatic changes in their intrinsic properties during phase transitions. However, due to the rapid transition rate and wide dynamics, monitoring of processes is challenging. Previous detection methods are lack of speed and simplicity and require multiple interventions, which largely introduce human factors influencing the results and make it difficult to guarantee the accuracy and visualization. In this paper, the photonic spin Hall effect is used for real-time detection and highly sensitive analysis of the phase transition process of VO2 films. By incorporating with quantum weak measurement, the photonic spin-Hall shift acts as the pointer, and the phase transition process of VO2 is characterized effectively. The high measurement resolution with 63 S/(m μm) is achieved due to weak-value amplification. In our scheme, it does not involve any mechanical adjustment of optical components, thus enabling real-time, visual, non-contact detection of dynamic phase transition processes.

1.
V. R.
Morrison
,
R. P.
Chatelain
,
K. L.
Tiwari
 et al, “
A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction
,”
Science
346
,
445
448
(
2014
).
2.
K.
Abbas
,
J.
Hwang
,
G.
Bae
 et al, “
Control of multilevel resistance in vanadium dioxide by electric field using hybrid dielectrics
,”
ACS Appl. Mater. Interfaces
9
,
13571
13576
(
2017
).
3.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
 et al, “
Suppression of metal–insulator transition in VO2 by electric field-induced oxygen vacancy formation
,”
Science
339
,
1402
1405
(
2013
).
4.
R. L.
Hao
,
Y.
Li
,
F.
Liu
 et al, “
Electric field induced metal–insulator transition in VO2 thin film based on FTO/VO2/FTO structure
,”
Infrared Phys. Technol.
75
,
82
86
(
2016
).
5.
C.
Neuman
,
A.
Lawson
, and
R.
Brown
, “
Pressure dependence of the resistance of VO2
,”
J. Chem. Phys.
41
,
1591
1595
(
1964
).
6.
Y.
Chen
,
S.
Zhang
,
F.
Ke
 et al, “
Pressure–temperature phase diagram of vanadium dioxide
,”
Nano Lett.
17
,
2512
2516
(
2017
).
7.
L.
Bai
,
Q.
Li
,
S. A.
Corr
 et al, “
Pressure-induced phase transitions and metallization in VO2
,”
Phys. Rev. B
91
,
104110
(
2015
).
8.
Q.
Hao
,
W.
Li
,
H.
Xu
 et al, “
VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications
,”
Adv. Mater.
30
,
1705421
(
2018
).
9.
D.
Li
,
A. A.
Sharma
,
D. K.
Gala
 et al, “
Joule heating-induced metal-insulator transition in epitaxial VO2/TiO2 devices
,”
ACS Appl. Mater. Interfaces
8
,
12908
12914
(
2016
).
10.
L.
Pellegrino
,
N.
Manca
,
T.
Kanki
 et al, “
Multistate memory devices based on free-standing VO2/TiO2 microstructures driven by Joule self-heating
,”
Adv. Mater.
24
,
2929
2934
(
2012
).
11.
M.
Onoda
,
S.
Murakami
, and
N.
Nagaosa
, “
Hall effect of light
,”
Phys. Rev. Lett.
93
,
083901
(
2004
).
12.
K. Y.
Bliokh
and
Y. P.
Bliokh
, “
Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet
,”
Phys. Rev. Lett.
96
,
073903
(
2006
).
13.
O.
Hosten
and
P.
Kwiat
, “
Observation of the spin Hall effect of light via weak measurements
,”
Science
319
,
787
790
(
2008
).
14.
X.
Yin
,
Z.
Ye
,
J.
Rho
,
Y.
Wang
, and
X.
Zhang
, “
Photonic spin Hall effect at metasurfaces
,”
Science
339
,
1405
1407
(
2013
).
15.
K. Y.
Bliokh
,
F. J.
Rodríguez-Fortuño
,
F.
Nori
, and
A. V.
Zayats
, “
Spin–orbit interactions of light
,”
Nat. Photonics
9
,
796
808
(
2015
).
16.
X.
Ling
,
X.
Zhou
,
K.
Huang
,
Y.
Liu
,
C. W.
Qiu
,
H.
Luo
, and
S.
Wen
, “
Recent advances in the spin Hall effect of light
,”
Rep. Prog. Phys.
80
,
066401
(
2017
).
17.
X.
Ling
,
F.
Guan
,
X.
Cai
,
S.
Ma
,
H.-X.
Xu
,
Q.
He
,
S.
Xiao
, and
L.
Zhou
, “
Topology-induced phase transitions in spin–orbit photonics
,”
Laser Photonics Rev.
15
(
6
),
2000492
(
2021
).
18.
X.
Ling
,
W.
Xiao
,
S.
Chen
,
X.
Zhou
,
H.
Luo
, and
L.
Zhou
, “
Revisiting the anomalous spin-Hall effect of light near the Brewster angle
,”
Phys. Rev. A
103
(
3
),
033515
(
2021
).
19.
X.
Ling
,
F.
Guan
,
Z.
Zhang
,
H.-X.
Xu
,
S.
Xiao
, and
H.
Luo
, “
Vortex mode decomposition of the topology-induced phase transitions in spin–orbit optics
,”
Phys. Rev. A
104
(
5
),
053504
(
2021
).
20.
X.
Zhou
,
X.
Ling
,
H.
Luo
, and
S.
Wen
, “
Identifying graphene layers via spin Hall effect of light
,”
Appl. Phys. Lett.
101
,
251602
(
2012
).
21.
X.
Zhou
,
Z.
Xiao
,
H.
Luo
, and
S.
Wen
, “
Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements
,”
Phys. Rev. A
85
,
043809
(
2012
).
22.
Y.
Gorodetski
,
K. Y.
Bliokh
,
B.
Stein
,
C.
Genet
,
N.
Shitrit
,
V.
Kleiner
,
E.
Hasman
, and
T. W.
Ebbesen
, “
Weak measurements of light chirality with a plasmonic slit
,”
Phys. Rev. Lett.
109
,
013901
(
2012
).
23.
W. J. M.
Kort-Kamp
, “
Topological phase transitions in the photonic spin Hall effect
,”
Phys. Rev. Lett.
119
,
147401
(
2017
).
24.
D.
Gao
,
R.
Shi
,
A. E.
Miroshnichenko
, and
L.
Gao
, “
Enhanced spin Hall effect of light in spheres with dual symmetry
,”
Laser Photonics Rev.
12
,
1800130
(
2018
).
25.
A.
Ciattoni
,
C.
Rizza
,
H.
Wai
,
H.
Lee
,
C.
Conti
, and
A.
Marini
, “
Plasmon enhanced spin–orbit interaction of light in graphene
,”
Laser Photonics Rev.
12
,
1800140
(
2018
).
26.
T.
Zhu
,
Y.
Lou
,
Y.
Zhou
,
J.
Zhang
,
J.
Huang
,
Y.
Li
,
H.
Luo
,
S.
Wen
,
S.
Zhu
,
Q.
Gong
,
M.
Qiu
, and
Z.
Ruan
, “
Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection
,”
Phys. Rev. Appl.
11
,
034043
(
2019
).
27.
J.
Zhou
,
H.
Qian
,
C. F.
Chen
,
J.
Zhao
,
G.
Li
,
Q.
Wu
,
H.
Luo
,
S.
Wen
, and
Z.
Liu
, “
Optical edge detection based on high-efficiency dielectric metasurface
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
11137
11140
(
2019
).
28.
H.
Luo
,
X.
Zhou
,
W.
Shu
,
S.
Wen
, and
D.
Fan
, “
Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection
,”
Phys. Rev. A
84
(
4
),
1452
1457
(
2011
).
29.
X.
Zhou
,
J.
Zhang
,
X.
Ling
,
S.
Chen
,
H.
Luo
, and
S.
Wen
, “
Photonic spin Hall effect in topological insulators
,”
Phys. Rev. A
88
(
5
),
053840
(
2013
).
30.
X.
Zhou
,
X.
Li
,
H.
Luo
, and
S.
Wen
, “
Optimal preselection and postselection in weak measurements for observing photonic spin Hall effect
,”
Appl. Phys. Lett.
104
(
5
),
051130
(
2014
).
31.
S.
Chen
,
X.
Zhou
,
C.
Mi
,
H.
Luo
, and
S.
Wen
, “
Modified weak measurements for the detection of the photonic spin Hall effect
,”
Phys. Rev. A
91
,
062105
(
2015
).
32.
X. D.
Qiu
,
L. G.
Xie
,
X.
Liu
 et al, “
Estimation of optical rotation of chiral molecules with weak measurements
,”
Opt. Lett.
41
(
17
),
4032
4035
(
2016
).
33.
Y.
Zhang
,
D.
Li
,
Y.
He
 et al, “
Optical weak measurement system with common path implementation for label-free biomolecule sensing
,”
Opt. Lett.
41
(
22
),
5409
5412
(
2016
).
34.
T.
Guan
,
X. N.
Wang
,
D. M.
Li
 et al, “
Determination of tumor marker carcinoembryonic antigen with biosensor based on optical quantum weak measurements
,”
Sensors
18
(
5
),
1550
1562
(
2018
).
35.
S. Y.
Zhong
,
T.
Guan
,
Y.
Xu
 et al, “
Simultaneous sensing axial and radial magnetic fields based on weak measurement
,”
Opt. Commun.
486
,
126777
(
2021
).
36.
D. M.
Li
,
T.
Guan
,
J. Y.
Jiang
 et al, “
No disturbing transverse acoustic sensor based on weak measurement in Mach–Zehnder interferometer
,”
Opt. Eng.
56
(
3
),
034107
(
2017
).
37.
Y. H.
He
and
D. M.
Li
, “
Method for detecting underwater sound field information, device and underwater acoustic sensor
,” Publication No. CN105928605A (7 September
2016
).

Supplementary Material

You do not currently have access to this content.