A ferroelectret cellular structure of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is fabricated by a 3D printing technique that exhibits a giant piezoelectric coefficient of 1200 pC/N, which is 40 times higher than its commonly known film counterpart. It attributes that the bi-polar charge separation in cellular voids upon the corona discharge behaves as macroscopic dipoles. An increase in the surface potential and dielectric constant (from 10 to 20 at 1 kHz) also attributes to charged voids. Furthermore, the deviation of ferroelectric behavior, for instance, the continuous increasing trend in dielectric constant and remanent polarization as a function of temperature attributes to ferroelectret behavior of a 3D printed P(VDF-TrFE) specimen. The mechanical energy harvester (MEH) made with this ferroelectret structure shows prompt response with 4 W/m2 of the power density. Furthermore, the benefit of the giant piezoelectric coefficient of the MEH is used to demonstrate self-powered tactile mapping.

1.
S.
Bauer
,
R.
Gerhard
, and
G. M.
Sessler
,
Phys. Today
57
(
2
),
37
(
2004
).
2.
Y.
Xue
,
X.
Zhang
,
R.
Chadda
,
G. M.
Sessler
, and
M. J.
Kupnik
,
J. Acoust. Soc. Am.
147
,
EL421
(
2020
).
3.
C.
Jean-Mistral
,
T.
Vu Cong
, and
A.
Sylvestre
,
Appl. Phys. Lett.
101
,
162901
(
2012
).
4.
G.
Sessler
and
J.
Hillenbrand
, in
ISE 10 Proceedings
,
1999
.
5.
R.
Gerhard-Multhaupt
,
W.
Kunstler
,
T.
Gome
,
A.
Pucher
,
T.
Weinhold
,
M.
Seiß
,
Z.
Xia
,
A.
Wedel
, and
R. J.
Danz
,
IEEE Trans. Dielectr. Electr. Insul.
7
,
480
(
2000
).
6.
F.
Liu
,
M.
Li
,
W.
Shao
,
W.
Yue
,
B.
Hu
,
K.
Weng
,
Y.
Chen
,
X.
Liao
, and
J.
He
,
J. Colloid Interface Sci.
557
,
318
(
2019
).
7.
X.
Huiming
,
C.
Gangjin
,
C.
Xumin
, and
C.
Zhi
,
Sci. Rep.
7
,
8443
(
2017
).
8.
S. K.
Ghosh
,
M.
Xie
,
C. R.
Bowen
,
P. R.
Davies
,
D. J.
Morgan
, and
D.
Mandal
,
Sci. Rep.
7
,
16703
(
2017
).
9.
K.
Roy
,
S.
Jana
,
S. K.
Ghosh
,
B.
Mahanty
,
Z.
Mallick
,
S.
Sarkar
,
C.
Sinha
, and
D.
Mandal
,
Langmuir
36
,
11477
(
2020
).
10.
N.
Wu
,
X.
Cheng
,
Q.
Zhong
,
J.
Zhong
,
W.
Li
,
B.
Wang
,
B.
Hu
, and
J.
Zhou
,
Adv. Funct. Mater.
25
,
4788
(
2015
).
11.
N.
Wang
,
R.
Daniels
,
L.
Connelly
,
M.
Sotzing
,
C.
Wu
,
R.
Gerhard
,
G. A.
Sotzing
, and
Y.
Cao
,
Small
17
,
2103161
(
2021
).
12.
O. B.
Dali
,
H.
von Seggern
,
G. M.
Sessler
,
P.
Pondrom
,
S.
Zhukov
,
X.
Zhang
, and
M.
Kupnik
,
Nano Select
3
,
713
(
2022
).
13.
J.
Zhu
,
Q.
Zhang
,
T.
Yang
,
Y.
Liu
, and
R.
Liu
,
Nat. Commun.
11
,
3462
(
2020
).
14.
O. B.
Dali
,
P.
Pondrom
,
G. M.
Sessler
,
S.
Zhukov
,
H. V.
Seggern
,
X.
Zhang
, and
M. J.
Kupnik
,
Appl. Phys. Lett.
116
,
243901
(
2020
).
15.
J.
Wu
,
C.
Yuan
,
Z.
Ding
,
M.
Isakov
,
Y.
Mao
,
T.
Wang
,
M. L.
Dunn
, and
H.
Qi
,
Sci. Rep.
6
,
24224
(
2016
).
16.
A.
Nojoomi
,
H.
Arslan
,
K.
Lee
, and
K.
Yum
,
Nat. Commun.
9
,
3705
(
2018
).
17.
G.
Hu
,
T.
Albrow-Owen
,
X.
Jin
,
A.
Ali
,
Y.
Hu
,
R. C.
Howe
,
K.
Shehzad
,
Z.
Yang
,
X.
Zhu
, and
R.
Woodward
,
Nat. Commun.
8
,
278
(
2017
).
18.
W.
Zhang
,
H.
Wang
,
H.
Wang
,
J. Y. E.
Chan
,
H.
Liu
,
B.
Zhang
,
Y.-F.
Zhang
,
K.
Agarwal
,
X.
Yang
, and
A. S.
Ranganath
,
Nat. Commun.
12
,
112
(
2021
).
19.
H.
Yuk
,
B.
Lu
,
S.
Lin
,
K.
Qu
,
J.
Xu
,
J.
Luo
, and
X.
Zhao
,
Nat. Commun.
11
,
1604
(
2020
).
20.
M. C.
Gonzalez
,
A. D.
Alfaro
,
N. L.
Larrea
,
N.
Alegret
, and
D.
Mecerreyes
,
ACS Appl. Polym. Mater.
3
,
2865
(
2021
).
21.
G. M.
Sessler
,
Electrets
(
Springer
,
1980
), p.
13
.
22.
Z.
Xu
,
J.
Duan
,
W.
Li
,
N.
Wu
,
Y.
Pan
,
S.
Lin
,
J.
Li
,
F.
Yuan
,
S.
Chen
, and
L.
Huang
,
ACS Appl. Mater. Interfaces
11
,
3984
(
2019
).
23.
H.
Fan
,
Y.
Peng
,
Z.
Li
,
P.
Chen
,
Q.
Jiang
, and
S.
Wang
,
J. Polym. Res.
20
,
134
(
2013
).
24.
C.
Wan
and
C. R.
Bowen
,
J. Mater. Chem. A
5
,
3091
(
2017
).
25.
M.
Wang
,
G.
Yang
,
P.
Jin
,
H.
Tang
,
H.
Wang
, and
Y.
Chen
,
Sci. Rep.
6
,
19148
(
2016
).
26.
I. O.
Akimchenko
,
G. E.
Dubinenko
,
S.
Rutkowski
,
S. I.
Tverdokhlebov
,
A. O.
Vorobyev
,
V. M.
Bouznik
, and
E. N.
Bolbasov
,
Appl. Phys. Lett.
119
,
202902
(
2021
).
27.
X.
Hu
,
Z.
Ding
,
L.
Fei
,
Y.
Xiang
, and
Y.
Lin
,
J. Mater. Sci.
54
,
6401
(
2019
).
28.
K.
Müller
,
D.
Mandal
,
K.
Henkel
,
I.
Paloumpa
, and
D.
Schmeisser
,
Appl. Phys. Lett.
93
,
112901
(
2008
).
29.
M.
Wegener
and
R. G.
Multhaupt
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
921
(
2003
).
31.
Q.
Zhang
,
S.
Liu
,
H.
Luo
,
Z.
Guo
,
X.
Hu
, and
Y.
Xiang
,
Sens. Actuators, A
315
,
112286
(
2020
).
32.
M.
You
,
X.
Hu
, and
Y.
Xiang
,
IOP Conf. Ser.: Earth Environ. Sci.
770
,
012071
(
2021
).
33.
A.
Babu
,
V.
Gupta
, and
D.
Mandal
,
Appl. Phys. Lett.
120
,
093701
(
2022
).
34.
D. M.
Kim
,
C. B.
Eom
,
V.
Nagarajan
,
J.
Ouyang
,
R.
Ramesh
,
V.
Vaithyanathan
, and
D. G.
Schlom
,
Appl. Phys. Lett.
88
,
142904
(
2006
).
35.
D.
Damjanovic
,
F.
Brem
, and
N.
Setter
,
Appl. Phys. Lett.
80
,
652
(
2002
).
36.
K.
Chau
,
Y.
Wong
, and
F. G.
Shin
,
Appl. Phys. Lett.
91
,
252910
(
2007
).
37.
S. K.
Ghosh
and
D.
Mandal
,
Appl. Phys. Lett.
109
,
103701
(
2016
).
38.
S.
Zhukov
,
X.
Ma
,
H. V.
Seggern
,
G. M.
Sessler
,
O. B.
Dali
,
M.
Kupnik
, and
X.
Zhang
,
Appl. Phys. Lett.
117
,
112901
(
2020
).
39.
G. P.
Vittrant
,
A. S.
Dahiya
,
S.
Boubenia
,
K.
Nadaud
,
F.
Morini
,
C.
Justeau
, and
D.
Alquier
,
Mater. Sci. Semicond. Process.
91
,
404
(
2019
).
40.
Y.
Cao
,
J.
Figueroa
,
W.
Li
,
Z.
Chen
,
Z. L.
Wang
, and
N.
Sepúlveda
,
Nano Energy
63
,
103852
(
2019
).
41.
V.
Gupta
,
A.
Babu
,
S. K.
Ghosh
,
Z.
Mallick
,
H. K.
Mishra
,
D.
Saini
, and
D.
Mandal
,
Appl. Phys. Lett.
119
,
252902
(
2021
).

Supplementary Material

You do not currently have access to this content.