Cascaded Brillouin lasers based on guided-wave structures are applied across a range of important fields such as optical communications, microwave photonics, and sensing. However, restricted by the volume and available transmission range of the gain medium, the power output and wavelength diversity of guided-wave Brillouin devices are somewhat limited. In this work, we report the design and development of a cascaded Brillouin laser based utilizing a free-space optical layout with a diamond crystal as the Brillouin gain medium. A quasi-continuous-wave, 1 μm laser was used as the pump laser, and Raman wavelength conversion is used as an intermediate process to facilitate stimulated Brillouin scattering with a low threshold. When the output transmission of the diamond cavity is 0.37% and the incident pump power is 220 W, cascading of the Brillouin–Stokes field to the eighth Stokes and the seventh anti-Stokes orders was observed. By adjusting the cavity length, the order of the cascaded Brillouin laser output is controlled. A comprehensive analysis of the Brillouin generation process and the cascade of Stokes orders is undertaken for different incident pump powers and cavity lengths. This work is expected to enable practical applications of high-power Brillouin lasers and Brillouin frequency combs.

1.
B. J.
Eggleton
,
C. G.
Poulton
,
P. T.
Rakich
 et al, “
Brillouin integrated photonics
,”
Nat. Photonics
13
(
10
),
664
677
(
2019
).
2.
Y.
Liu
,
A.
Choudhary
,
D.
Marpaung
 et al, “
Integrated microwave photonic filters
,”
Adv. Opt. Photonics
12
(
2
),
485
555
(
2020
).
3.
X.
Wang
,
Y.
Yang
,
M.
Liu
 et al, “
Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers
,”
Appl. Opt.
55
(
23
),
6475
(
2016
).
4.
Y.
Liu
,
Y.
Shang
,
X.
Yi
 et al, “
Triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement
,”
Opt. Fiber Technol.
54
,
102106
(
2020
).
5.
Z.
Bai
,
H.
Yuan
,
Z.
Liu
 et al, “
Stimulated Brillouin scattering materials, experimental design and applications: A review
,”
Opt. Mater.
75
,
626
645
(
2018
).
6.
C.
Guo
,
K.
Che
,
Z.
Cai
 et al, “
Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation
,”
Opt. Lett.
40
(
21
),
4971
(
2015
).
7.
A.
Debut
,
S.
Randoux
, and
J.
Zemmouri
, “
Linewidth narrowing in Brillouin lasers: Theoretical analysis
,”
Phys. Rev. A
62
(
2
),
023803
(
2000
).
8.
M. R.
Shirazi
,
N. S.
Shahabuddin
,
S. N.
Aziz
 et al, “
A linear cavity Brillouin fiber laser with multiple wavelengths output
,”
Laser Phys. Lett.
5
(
5
),
361
363
(
2008
).
9.
M. H.
Al-Mansoori
,
S. J.
Iqbal
,
M. K.
Abdullah
 et al, “
Low threshold characteristics of an L-band Brillouin-erbium comb fiber laser in a linear cavity
,”
J. Opt. Soc. Am. B
23
(
11
),
2281
(
2006
).
10.
D.
Braje
,
L.
Hollberg
, and
S.
Diddams
, “
Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser
,”
Phys. Rev. Lett.
102
(
19
),
193902
(
2009
).
11.
T. F. S.
Büttner
,
I. V.
Kabakova
,
D. D.
Hudson
 et al, “
Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing
,”
Sci. Rep.
4
(
6186
),
5032
(
2015
).
12.
M.
Merklein
,
I. V.
Kabakova
,
T. F. S.
Büttner
 et al, “
Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits
,”
Nat. Commun.
6
,
6396
(
2015
).
13.
T. F. S.
Büttner
,
M.
Merklein
,
I. V.
Kabakova
 et al, “
Phase-locked, chip-based, cascaded stimulated Brillouin scattering
,”
Optica
1
(
5
),
311
314
(
2014
).
14.
R.
Pant
,
E.
Li
,
D.-Y.
Choi
 et al, “
Cavity enhanced stimulated Brillouin scattering in an optical chip for multi order Stokes generation
,”
Opt. Lett.
36
(
18
),
3687
(
2011
).
15.
R.
Pant
,
D.
Marpaung
,
I. V.
Kabakova
 et al, “
On-chip stimulated Brillouin scattering for microwave signal processing and generation: On-chip stimulated Brillouin scattering
,”
Laser Photonics Rev.
8
(
5
),
653
666
(
2014
).
16.
N. T.
Otterstrom
,
R. O.
Behunin
,
E. A.
Kittlaus
 et al, “
A silicon Brillouin laser
,”
Science
360
(
6393
),
1113
1116
(
2018
).
17.
M. N. M.
Nasir
,
Z.
Yusoff
,
M. H.
Al-Mansoori
 et al, “
Low threshold and efficient multi-wavelength Brillouin erbium fiber laser incorporating a fiber Bragg grating filter with intra-cavity pre-amplified Brillouin pump
,”
Laser Phys. Lett.
6
(
1
),
54
58
(
2009
).
18.
Q.
Li
,
Z. X.
Jia
,
H. Z.
Weng
 et al, “
Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity
,”
Laser Phys. Lett.
15
(
5
),
055103
(
2018
).
19.
M. N.
Mohd Nasir
,
Z.
Yusoff
,
M. H.
Al-Mansoori
 et al, “
Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity
,”
Laser Phys. Lett.
5
(
11
),
812
816
(
2008
).
20.
S. W.
Harun
,
S.
Shahi
, and
H.
Ahmad
, “
Compact Brillouin–erbium fiber laser
,”
Opt. Lett.
34
(
1
),
46
(
2009
).
21.
G.
Lin
,
S.
Diallo
,
K.
Saleh
 et al, “
Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators
,”
Appl. Phys. Lett.
105
(
23
),
231103
(
2014
).
22.
T.
Fortier
and
E.
Baumann
, “
20 years of developments in optical frequency comb technology and applications
,”
Commun. Phys.
2
,
153
(
2019
).
23.
S.
Leifer
,
S. A.
Diddams
,
K.
Vahala
 et al, “
Optical frequency combs for space applications
,” in
Optical Frequency Combs for Space Applications Workshop
, November 2–5 (
Keck Institute for Space Studies
,
2015
).
24.
R. J.
Williams
,
J.
Nold
,
M.
Strecker
 et al, “
Efficient Raman frequency conversion of high-power fiber lasers in diamond
,”
Laser Photonics Rev.
9
(
4
),
405
411
(
2015
).
25.
R. P.
Mildren
, “
Intrinsic optical properties of diamond
,”
Optical Engineering of Diamond
, edited by
R. P.
Mildren
and
J. R.
Rabeau
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2013
), pp.
1
34
.
26.
I.
Friel
,
S. L.
Geoghegan
,
D. J.
Twitchen
, and
G. A.
Scarsbrook
, “
Development of high quality single crystal diamond for novel laser applications
,”
Proc. SPIE
7838
,
783819
(
2010
).
27.
R. S.
Balmer
,
J. R.
Brandon
,
S. L.
Clewes
 et al, “
Chemical vapour deposition synthetic diamond: Materials, technology and applications
,”
J. Phys.: Condens. Matter
21
(
36
),
364221
(
2009
).
28.
E.
Anoikin
,
A.
Muhr
,
A.
Bennett
 et al, “
Diamond optical components for high-power and high-energy laser applications
,”
Proc. SPIE
9346
,
93460T
(
2015
).
29.
Z.
Bai
,
R. J.
Williams
,
O.
Kitzler
 et al, “
Diamond Brillouin laser in the visible
,”
APL Photonics
5
(
3
),
031301
(
2020
).
30.
M.
Heinzig
,
G.
Palma-Vega
,
T.
Walbaum
 et al, “
Diamond Raman oscillator operating at 1178 nm
,”
Opt. Lett.
45
(
10
),
2898
2901
(
2020
).
31.
R. J.
Williams
,
Z.
Bai
,
S.
Sarang
 et al, “
Diamond Brillouin lasers
,” arXiv:1807.00240 [physics] (
2018
).
32.
S.
Ma
,
H.
Tu
,
D.
Lu
 et al, “
Efficient Raman red laser with second-order Stokes effect of diamond crystal
,”
Opt. Commun.
478
,
126399
(
2021
).
33.
J. T.
Murray
,
W. L.
Austin
, and
R. C.
Powell
, “
Intracavity Raman conversion and Raman beam cleanup
,”
Opt. Mater.
11
(
4
),
353
371
(
1999
).
34.
Z.
Bai
,
R. J.
Williams
,
H.
Jasbeer
 et al, “
Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion
,”
Opt. Lett.
43
(
3
),
563
566
(
2018
).
35.
Z.
Bai
,
R. J.
Williams
,
O.
Kitzler
 et al, “
302 W quasi-continuous cascaded diamond Raman laser at 15 microns with large brightness enhancement
,”
Opt. Express
26
(
16
),
19797
(
2018
).
36.
R. J.
Williams
,
O.
Kitzler
,
A.
McKay
 et al, “
Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping
,”
Opt. Lett.
39
(
14
),
4152
(
2014
).
37.
Z.
Bai
,
Z.
Zhang
,
K.
Wang
 et al, “
Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method
,”
Nanomaterials
11
(
6
),
1572
(
2021
).
38.
A.
Sabella
,
J. A.
Piper
, and
R. P.
Mildren
, “
1240 nm diamond Raman laser operating near the quantum limit
,”
Opt. Lett.
35
(
23
),
3874
(
2010
).
39.
H.
Jasbeer
,
R. J.
Williams
,
O.
Kitzler
 et al, “
Birefringence and piezo-Raman analysis of single crystal CVD diamond and effects on Raman laser performance
,”
J. Opt. Soc. Am. B
33
(
3
),
B56
(
2016
).
You do not currently have access to this content.