The light from a twisted laser beam, scattered at an air/water interface, experiences a rotational Doppler shift. We use a superposition of two beams with different topological charges to measure the beat frequency of the scattered light by a Rankine type vortex at different positions from its center. We show that the angular velocity decreases with the distance in total agreement with a Rankine vortex model. Several extensions are then considered, including the detection of turbulences generated in the wake of airplanes.

1.
F.
Tamburini
,
B.
Thidé
,
G.
Molina-Terriza
, and
G.
Anzolin
, “
Twisting of light around rotating black holes
,”
Nat. Phys.
7
,
195
197
(
2011
).
2.
F.
Tamburini
,
B.
Thidé
, and
M. D.
Valle
, “
Measurement of the spin of the M87 black hole from its observed twisted light
,”
Mon. Not. R. Astron. Soc.
492
,
L22
L27
(
2020
).
3.
G. P.
Bewley
,
D. P.
Lathrop
, and
K. R.
Sreenivasan
, “
Visualization of quantized vortices
,”
Nature
441
,
588
588
(
2006
).
4.
M. R.
Matthews
,
B. P.
Anderson
,
P.
Haljan
,
D.
Hall
,
C.
Wieman
, and
E. A.
Cornell
, “
Vortices in a Bose-Einstein condensate
,”
Phys. Rev. Lett.
83
,
2498
(
1999
).
5.
R. P.
Feynman
,
R. B.
Leighton
, and
M. L.
Sands
,
The Feynman Lectures on Physics
(
Pearson/Addison-Wesley
,
Boston
,
2006
).
6.
Handbook of Experimental Fluid Mechanics
, Vol.
1
, edited by
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
(
Springer
,
Berlin
,
2007
).
7.
J.-H.
Feng
,
C.-B.
Shen
, and
Q.-C.
Wang
, “
Three-dimensional evolution of large-scale vortices in supersonic flow
,”
Appl. Phys. Lett.
107
,
254101
(
2015
).
8.
G.
Molina-Terriza
,
J. P.
Torres
, and
L.
Torner
, “
Twisted photons
,”
Nat. Phys.
3
,
305
310
(
2007
).
9.
B.
Thidé
and
F.
Tamburini
,
OAM Radio-Physical Foundations and Applications of Electromagnetic Orbital Angular Momentum in Radio Science and Technology
(
John Wiley and Sons
,
2021
), pp.
33
95
.
10.
L.
Fang
,
M. J.
Padgett
, and
J.
Wang
, “
Sharing a common origin between the rotational and linear Doppler effects
,”
Laser Photonics Rev.
11
,
1700183
(
2017
).
11.
M.
Mansuripur
, “
Angular momentum exchange between light and material media deduced from the Doppler shift
,”
Proc. SPIE
8458
,
845805
(
2012
).
12.
A. Y.
Okulov
, “
Rotational Doppler shift of a phase-conjugated photon
,”
J. Opt. Soc. Am. B
29
,
714
718
(
2012
).
13.
O.
Emile
,
J.
Emile
, and
C.
Brousseau
, “
Rotational Doppler shift upon reflection from a right angle prism
,”
Appl. Phys. Lett.
116
,
221102
(
2020
).
14.
P.
Georgi
,
C.
Schlickriede
,
G.
Li
,
S.
Zhang
, and
T.
Zentgraf
, “
Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces
,”
Optica
4
,
1000
1005
(
2017
).
15.
W.
Zhang
,
J.
Gao
,
D.
Zhang
,
Y.
He
,
T.
Xu
,
R.
Fickler
, and
L.
Chen
, “
Free-space remote sensing of rotation at the photon-counting level
,”
Phys. Rev. Appl.
10
,
044014
(
2018
).
16.
O.
Emile
,
J.
Emile
,
C.
Brousseau
,
T.
le Guennic
,
P.
Jian
, and
G.
Labroille
, “
Rotational Doppler shift from a rotating rod
,”
Opt. Lett.
46
,
3765
3768
(
2021
).
17.
M. P.
Lavery
,
F. C.
Speirits
,
S. M.
Barnett
, and
M. J.
Padgett
, “
Detection of a spinning object using light orbital angular momentum
,”
Science
341
,
537
540
(
2013
).
18.
M. P.
Lavery
,
S. M.
Barnett
,
F. C.
Speirits
, and
M. J.
Padgett
, “
Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body
,”
Optica
1
,
1
4
(
2014
).
19.
A.
Ryabtsev
,
S.
Pouya
,
A.
Safaripour
,
M.
Koochesfahani
, and
M.
Dantus
, “
Fluid flow vorticity measurement using laser beams with orbital angular momentum
,”
Opt. Express
24
,
11762
11767
(
2016
).
20.
O.
Emile
,
C.
Brousseau
,
J.
Emile
,
R.
Niemiec
,
K.
Madhjoubi
, and
B.
Thide
, “
Electromagnetically induced torque on a large ring in the microwave range
,”
Phys. Rev. Lett.
112
,
053902
(
2014
).
21.
M. V.
Berry
, “
Optical vortices evolving from helicoidal integer and fractional phase steps
,”
J. Opt. A
6
,
259
268
(
2004
).
22.
J. B.
Götte
,
K.
O'Holleran
,
D.
Preece
,
F.
Flossmann
,
S.
Franke-Arnold
,
S. M.
Barnett
, and
M. J.
Padgett
, “
Light beams with fractional orbital angular momentum and their vortex structure
,”
Opt. Express
16
,
993
1006
(
2008
).
23.
M. J.
Padgett
,
F. M.
Miatto
,
M. P. J.
Lavery
,
A.
Zeilinger
, and
R. W.
Boyd
, “
Divergence of an orbital-angular-momentum-carrying beam upon propagation
,”
New J. Phys.
17
,
023011
(
2015
).
24.
A.
Belmonte
,
C.
Rosales-Guzmán
, and
J. P.
Torres
, “
Measurement of flow vorticity with helical beams of light
,”
Optica
2
,
1002
1005
(
2015
).
25.
D.
Acheson
and
F. D.
Acheson
,
Elementary Fluid Dynamics
(
Oxford University Press
,
1990
).
26.
N. D.
Katopodes
, “
Vorticity dynamics
,” in
Free-Surface Flow
, edited by
N. D.
Katopodes
(
Butterworth-Heinemann
,
2019
), Chap. 7, pp.
516
565
.
27.
G.
Halász
,
B.
Gyüre
,
I. M.
Jánosi
,
K. G.
Szabó
, and
T.
Tél
, “
Vortex flow generated by a magnetic stirrer
,”
Am. J. Phys.
75
,
1092
1098
(
2007
).
28.
O.
Emile
and
J.
Emile
, “
Energy, linear momentum, and angular momentum of light: What do we measure?
,”
Ann. Phys.
530
,
1800111
(
2018
).
29.
R. D.
Lorenz
,
M. R.
Balme
,
Z.
Gu
 et al., “
History and applications of dust devil studies
,”
Space Sci. Rev.
203
,
5
37
(
2016
).
30.
L.
Wu
,
Q.
Liu
, and
Y.
Li
, “
Prevalence of tornado-scale vortices in the tropical cyclone eyewall
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8307
8310
(
2018
).
31.
T.
Gerz
,
F.
Holzpfel
, and
D.
Darracq
, “
Commercial aircraft wake vortices
,”
Progr. Aerosp. Sci.
38
,
181
208
(
2002
).
32.
A.
Dolfi-Bouteyre
,
G.
Canat
,
M.
Valla
 et al., “
Pulsed 1.5-μm lidar for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier
,”
IEEE J. Sel. Top. Quantum Electron.
15
,
441
450
(
2009
).
You do not currently have access to this content.