The light from a twisted laser beam, scattered at an air/water interface, experiences a rotational Doppler shift. We use a superposition of two beams with different topological charges to measure the beat frequency of the scattered light by a Rankine type vortex at different positions from its center. We show that the angular velocity decreases with the distance in total agreement with a Rankine vortex model. Several extensions are then considered, including the detection of turbulences generated in the wake of airplanes.
References
1.
F.
Tamburini
, B.
Thidé
, G.
Molina-Terriza
, and G.
Anzolin
, “Twisting of light around rotating black holes
,” Nat. Phys.
7
, 195
–197
(2011
).2.
F.
Tamburini
, B.
Thidé
, and M. D.
Valle
, “Measurement of the spin of the M87 black hole from its observed twisted light
,” Mon. Not. R. Astron. Soc.
492
, L22
–L27
(2020
).3.
G. P.
Bewley
, D. P.
Lathrop
, and K. R.
Sreenivasan
, “Visualization of quantized vortices
,” Nature
441
, 588
–588
(2006
).4.
M. R.
Matthews
, B. P.
Anderson
, P.
Haljan
, D.
Hall
, C.
Wieman
, and E. A.
Cornell
, “Vortices in a Bose-Einstein condensate
,” Phys. Rev. Lett.
83
, 2498
(1999
).5.
R. P.
Feynman
, R. B.
Leighton
, and M. L.
Sands
, The Feynman Lectures on Physics
(Pearson/Addison-Wesley
, Boston
, 2006
).6.
Handbook of Experimental Fluid Mechanics
, Vol. 1
, edited by C.
Tropea
, A. L.
Yarin
, and J. F.
Foss
(Springer
, Berlin
, 2007
).7.
J.-H.
Feng
, C.-B.
Shen
, and Q.-C.
Wang
, “Three-dimensional evolution of large-scale vortices in supersonic flow
,” Appl. Phys. Lett.
107
, 254101
(2015
).8.
G.
Molina-Terriza
, J. P.
Torres
, and L.
Torner
, “Twisted photons
,” Nat. Phys.
3
, 305
–310
(2007
).9.
B.
Thidé
and F.
Tamburini
, OAM Radio-Physical Foundations and Applications of Electromagnetic Orbital Angular Momentum in Radio Science and Technology
(John Wiley and Sons
, 2021
), pp. 33
–95
.10.
L.
Fang
, M. J.
Padgett
, and J.
Wang
, “Sharing a common origin between the rotational and linear Doppler effects
,” Laser Photonics Rev.
11
, 1700183
(2017
).11.
M.
Mansuripur
, “Angular momentum exchange between light and material media deduced from the Doppler shift
,” Proc. SPIE
8458
, 845805
(2012
).12.
A. Y.
Okulov
, “Rotational Doppler shift of a phase-conjugated photon
,” J. Opt. Soc. Am. B
29
, 714
–718
(2012
).13.
O.
Emile
, J.
Emile
, and C.
Brousseau
, “Rotational Doppler shift upon reflection from a right angle prism
,” Appl. Phys. Lett.
116
, 221102
(2020
).14.
P.
Georgi
, C.
Schlickriede
, G.
Li
, S.
Zhang
, and T.
Zentgraf
, “Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces
,” Optica
4
, 1000
–1005
(2017
).15.
W.
Zhang
, J.
Gao
, D.
Zhang
, Y.
He
, T.
Xu
, R.
Fickler
, and L.
Chen
, “Free-space remote sensing of rotation at the photon-counting level
,” Phys. Rev. Appl.
10
, 044014
(2018
).16.
O.
Emile
, J.
Emile
, C.
Brousseau
, T.
le Guennic
, P.
Jian
, and G.
Labroille
, “Rotational Doppler shift from a rotating rod
,” Opt. Lett.
46
, 3765
–3768
(2021
).17.
M. P.
Lavery
, F. C.
Speirits
, S. M.
Barnett
, and M. J.
Padgett
, “Detection of a spinning object using light orbital angular momentum
,” Science
341
, 537
–540
(2013
).18.
M. P.
Lavery
, S. M.
Barnett
, F. C.
Speirits
, and M. J.
Padgett
, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body
,” Optica
1
, 1
–4
(2014
).19.
A.
Ryabtsev
, S.
Pouya
, A.
Safaripour
, M.
Koochesfahani
, and M.
Dantus
, “Fluid flow vorticity measurement using laser beams with orbital angular momentum
,” Opt. Express
24
, 11762
–11767
(2016
).20.
O.
Emile
, C.
Brousseau
, J.
Emile
, R.
Niemiec
, K.
Madhjoubi
, and B.
Thide
, “Electromagnetically induced torque on a large ring in the microwave range
,” Phys. Rev. Lett.
112
, 053902
(2014
).21.
M. V.
Berry
, “Optical vortices evolving from helicoidal integer and fractional phase steps
,” J. Opt. A
6
, 259
–268
(2004
).22.
J. B.
Götte
, K.
O'Holleran
, D.
Preece
, F.
Flossmann
, S.
Franke-Arnold
, S. M.
Barnett
, and M. J.
Padgett
, “Light beams with fractional orbital angular momentum and their vortex structure
,” Opt. Express
16
, 993
–1006
(2008
).23.
M. J.
Padgett
, F. M.
Miatto
, M. P. J.
Lavery
, A.
Zeilinger
, and R. W.
Boyd
, “Divergence of an orbital-angular-momentum-carrying beam upon propagation
,” New J. Phys.
17
, 023011
(2015
).24.
A.
Belmonte
, C.
Rosales-Guzmán
, and J. P.
Torres
, “Measurement of flow vorticity with helical beams of light
,” Optica
2
, 1002
–1005
(2015
).25.
D.
Acheson
and F. D.
Acheson
, Elementary Fluid Dynamics
(Oxford University Press
, 1990
).26.
N. D.
Katopodes
, “Vorticity dynamics
,” in Free-Surface Flow
, edited by N. D.
Katopodes
(Butterworth-Heinemann
, 2019
), Chap. 7, pp. 516
–565
.27.
G.
Halász
, B.
Gyüre
, I. M.
Jánosi
, K. G.
Szabó
, and T.
Tél
, “Vortex flow generated by a magnetic stirrer
,” Am. J. Phys.
75
, 1092
–1098
(2007
).28.
O.
Emile
and J.
Emile
, “Energy, linear momentum, and angular momentum of light: What do we measure?
,” Ann. Phys.
530
, 1800111
(2018
).29.
R. D.
Lorenz
, M. R.
Balme
, Z.
Gu
et al., “History and applications of dust devil studies
,” Space Sci. Rev.
203
, 5
–37
(2016
).30.
L.
Wu
, Q.
Liu
, and Y.
Li
, “Prevalence of tornado-scale vortices in the tropical cyclone eyewall
,” Proc. Natl. Acad. Sci. U. S. A.
115
, 8307
–8310
(2018
).31.
T.
Gerz
, F.
Holzpfel
, and D.
Darracq
, “Commercial aircraft wake vortices
,” Progr. Aerosp. Sci.
38
, 181
–208
(2002
).32.
A.
Dolfi-Bouteyre
, G.
Canat
, M.
Valla
et al., “Pulsed 1.5-μm lidar for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier
,” IEEE J. Sel. Top. Quantum Electron.
15
, 441
–450
(2009
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.