Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena, such as quantum phase criticality, magnetism, and superconductivity. With the emergence of nanoscale 2D materials with magnetic phenomena, inductively detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials. The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale. However, due to depth-dependent formation efficiency of the defect centers, noise from surface spins, band bending effects, and the depth dependence of the nuclear magnetic field, there is ambiguity regarding the ideal NV depth for surface NMR of statistically polarized spins. In this work, we prepared a range of shallow NV ensemble layer depths and determined the ideal NV depth by performing NMR spectroscopy on statistically polarized 19F in Fomblin oil on the diamond surface. We found that the measurement time needed to achieve a signal-to-noise ratio of 3 using XY8-N noise spectroscopy has a minimum at an NV ensemble depth of 5.5 ± 1.5 nm for ensembles activated from 100 ppm nitrogen concentration. To demonstrate the sensing capabilities of NV ensembles, we perform NQR spectroscopy on the 11B of hexagonal boron nitride flakes. We compare our best diamond to previous work with a single NV and find that this ensemble provides a shorter measurement time with excitation diameters as small as 4 μm. This analysis provides ideal conditions for further experiments involving NMR/NQR spectroscopy of 2D materials with magnetic properties.

1.
C. P.
Slichter
, “
Magnetic resonance and superconductivity: Some history, ancient and in the making
,”
J. Supercond. Novel Magn.
19
,
159
166
(
2007
).
2.
T. N.
Lamichhane
,
K.
Rana
,
Q.
Lin
,
S. L.
Bud'ko
,
Y.
Furukawa
, and
P. C.
Canfield
, “
Near room temperature antiferromagnetic ordering with a potential low-dimensional magnetism in AlMn2B2
,”
Phys. Rev. Mater.
3
,
064415
(
2019
).
3.
J. S.
Lord
,
P. C.
Riedi
,
G. J.
Tomka
,
C.
Kapusta
, and
K. H. J.
Buschow
, “
NMR study of the ferromagnetic phases of SmMn2Ge2 as a function of temperature and pressure
,”
Phys. Rev. B
53
,
283
288
(
1996
).
4.
C. H.
Lin
,
K. R.
Shirer
,
J.
Crocker
,
A. P.
Dioguardi
,
M. M.
Lawson
,
B. T.
Bush
,
P.
Klavins
, and
N. J.
Curro
, “
Evolution of hyperfine parameters across a quantum critical point in CeRhIn5
,”
Phys. Rev. B
92
,
155147
(
2015
).
5.
S.
Wei
,
X.
Liao
,
C.
Wang
,
J.
Li
,
H.
Zhang
,
Y.-J.
Zeng
,
J.
Linghu
,
H.
Jin
, and
Y.
Wei
, “
Emerging intrinsic magnetism in two-dimensional materials: Theory and applications
,”
2D Mater.
8
,
012005
(
2020
).
6.
K. S.
Burch
,
D.
Mandrus
, and
J.-G.
Park
, “
Magnetism in two-dimensional van der Waals materials
,”
Nature
563
,
47
52
(
2018
).
7.
V. P.
Ningrum
,
B.
Liu
,
W.
Wang
,
Y.
Yin
,
Y.
Cao
,
C.
Zha
,
H.
Xie
,
X.
Jiang
,
Y.
Sun
,
S.
Qin
,
X.
Chen
,
T.
Qin
,
C.
Zhu
,
L.
Wang
, and
W.
Huang
, “
Recent advances in two-dimensional magnets: Physics and devices towards spintronic applications
,”
Research
2020
,
1768918
.
8.
N.
Sethulakshmi
,
A.
Mishra
,
P.
Ajayan
,
Y.
Kawazoe
,
A. K.
Roy
,
A. K.
Singh
, and
C. S.
Tiwary
, “
Magnetism in two-dimensional materials beyond graphene
,”
Mater. Today
27
,
107
122
(
2019
).
9.
M. E.
Lacey
,
R.
Subramanian
,
D. L.
Olson
, and
A. G. W. J. V.
Sweedler
, “
High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL
,”
Chem. Rev.
99
,
3133
3152
(
1999
).
10.
F.
Casola
,
T.
van der Sar
, and
A.
Yacoby
, “
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
,”
Nat. Rev. Mater.
3
,
17088
(
2018
).
11.
S.
Hsieh
,
P.
Bhattacharyya
,
C.
Zu
,
T.
Mittiga
,
T. J.
Smart
,
F.
Machado
,
B.
Kobrin
,
T. O.
Höhn
,
N. Z.
Rui
,
M.
Kamrani
,
S.
Chatterjee
,
S.
Choi
,
M.
Zaletel
,
V. V.
Struzhkin
,
J. E.
Moore
,
V. I.
Levitas
,
R.
Jeanloz
, and
N. Y.
Yao
, “
Imaging stress and magnetism at high pressures using a nanoscale quantum sensor
,”
Science
366
,
1349
1354
(
2019
).
12.
L.
Thiel
,
Z.
Wang
,
M. A.
Tschudin
,
D.
Rohner
,
I.
Gutiérrez-Lezama
,
N.
Ubrig
,
M.
Gibertini
,
E.
Giannini
,
A. F.
Morpurgo
, and
P.
Maletinsky
, “
Probing magnetism in 2D materials at the nanoscale with single-spin microscopy
,”
Science
364
,
973
976
(
2019
).
13.
Q.-C.
Sun
,
T.
Song
,
E.
Anderson
,
A.
Brunner
,
J.
Förster
,
T.
Shalomayeva
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Gräfe
,
R.
Stöhr
,
X.
Xu
, and
J.
Wrachtrup
, “
Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging
,”
Nat. Commun.
12
,
1989
(
2021
).
14.
P. E.
Dolgirev
,
S.
Chatterjee
,
I.
Esterlis
,
A. A.
Zibrov
,
M. D.
Lukin
,
N. Y.
Yao
, and
E.
Demler
, “
Characterizing two-dimensional superconductivity via nanoscale noise magnetometry with single-spin qubits
,” arXiv:2106.05283 (
2021
).
15.
S.
Chatterjee
,
J. F.
Rodriguez-Nieva
, and
E.
Demler
, “
Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits
,”
Phys. Rev. B
99
,
104425
(
2019
).
16.
C.
Du
,
T.
van der Sar
,
T. X.
Zhou
,
P.
Upadhyaya
,
F.
Casola
,
H.
Zhang
,
M. C.
Onbasli
,
C. A.
Ross
,
R. L.
Walsworth
,
Y.
Tserkovnyak
, and
A.
Yacoby
, “
Control and local measurement of the spin chemical potential in a magnetic insulator
,”
Science
357
,
195
198
(
2017
).
17.
T. X.
Zhou
,
J. J.
Carmiggelt
,
L. M.
Gächter
,
I.
Esterlis
,
D.
Sels
,
R. J.
Stöhr
,
C.
Du
,
D.
Fernandez
,
J. F.
Rodriguez-Nieva
,
F.
Büttner
,
E.
Demler
, and
A.
Yacoby
, “
A magnon scattering platform
,”
Proc. Natl. Acad. Sci.
118
,
e2019473118
(
2021
).
18.
D. R.
Glenn
,
D. B.
Bucher
,
J.
Lee
,
M. D.
Lukin
,
H.
Park
, and
R. L.
Walsworth
, “
High-resolution magnetic resonance spectroscopy using a solid-state spin sensor
,”
Nature
555
,
351
354
(
2018
).
19.
J.
Smits
,
J. T.
Damron
,
P.
Kehayias
,
A. F.
McDowell
,
N.
Mosavian
,
I.
Fescenko
,
N.
Ristoff
,
A.
Laraoui
,
A.
Jarmola
, and
V. M.
Acosta
, “
Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor
,”
Sci. Adv.
5
,
eaaw7895
(
2019
).
20.
B. E.
Herzog
,
D.
Cadeddu
,
F.
Xue
,
P.
Peddibhotla
, and
M.
Poggio
, “
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
,”
Appl. Phys. Lett.
105
,
043112
(
2014
).
21.
L. M.
Pham
,
S. J.
DeVience
,
F.
Casola
,
I.
Lovchinsky
,
A. O.
Sushkov
,
E.
Bersin
,
J.
Lee
,
E.
Urbach
,
P.
Cappellaro
,
H.
Park
,
A.
Yacoby
,
M.
Lukin
, and
R. L.
Walsworth
, “
NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond
,”
Phys. Rev. B
93
,
045425
(
2016
).
22.
C. A.
Meriles
,
L.
Jiang
,
G.
Goldstein
,
J. S.
Hodges
,
J.
Maze
,
M. D.
Lukin
, and
P.
Cappellaro
, “
Imaging mesoscopic nuclear spin noise with a diamond magnetometer
,”
J. Chem. Phys.
133
,
124105
(
2010
).
23.
S.
Pezzagna
,
B.
Naydenov
,
F.
Jelezko
,
J.
Wrachtrup
, and
J.
Meijer
, “
Creation efficiency of nitrogen-vacancy centres in diamond
,”
New J. Phys.
12
,
065017
(
2010
).
24.
W.
Zhang
,
J.
Zhang
,
J.
Wang
,
F.
Feng
,
S.
Lin
,
L.
Lou
,
W.
Zhu
, and
G.
Wang
, “
Depth-dependent decoherence caused by surface and external spins for NV centers in diamond
,”
Phys. Rev. B
96
,
235443
(
2017
).
25.
B. A.
Myers
,
A.
Das
,
M. C.
Dartiailh
,
K.
Ohno
,
D. D.
Awschalom
, and
A. C.
Bleszynski Jayich
, “
Probing surface noise with depth-calibrated spins in diamond
,”
Phys. Rev. Lett.
113
,
027602
(
2014
).
26.
S. J.
DeVience
,
L. M.
Pham
,
I.
Lovchinsky
,
A. O.
Sushkov
,
N.
Bar-Gill
,
C.
Belthangady
,
F.
Casola
,
M.
Corbett
,
H.
Zhang
,
M.
Lukin
,
H.
Park
,
A.
Yacoby
, and
R. L.
Walsworth
, “
Nanoscale NMR spectroscopy and imaging of multiple nuclear species
,”
Nat. Nanotechnol.
10
,
129
134
(
2015
).
27.
I.
Lovchinsky
,
J. D.
Sanchez-Yamagishi
,
E. K.
Urbach
,
S.
Choi
,
S.
Fang
,
T. I.
Andersen
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Bylinskii
,
E.
Kaxiras
,
P.
Kim
,
H.
Park
, and
M. D.
Lukin
, “
Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit
,”
Science
355
,
503
507
(
2017
).
28.
J. F.
Ziegler
,
M.
Ziegler
, and
J.
Biersack
, “
SRIM—The stopping and range of ions in matter (2010)
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
1823
(
2010
).
29.
P.
Kehayias
,
J.
Henshaw
,
M.
Saleh Ziabari
,
M.
Titze
,
E.
Bielejec
,
M. P.
Lilly
, and
A. M.
Mounce
, “
A fitting algorithm for optimizing ion implantation energies and fluences
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
500–501
,
52
56
(
2021
).
30.
See https://cuttingedgeions.com/ for “
Communications With Cutting Edge Ions
31.
J.-P.
Tetienne
,
L.
Rondin
,
P.
Spinicelli
,
M.
Chipaux
,
T.
Debuisschert
,
J.-F.
Roch
, and
V.
Jacques
, “
Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging
,”
New J. Phys.
14
,
103033
(
2012
).
32.
T.
Staudacher
,
F.
Shi
,
S.
Pezzagna
,
J.
Meijer
,
J.
Du
,
C. A.
Meriles
,
F.
Reinhard
, and
J.
Wrachtrup
, “
Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume
,”
Science
339
,
561
563
(
2013
).
33.
A. M.
Souza
,
G. A.
Álvarez
, and
D.
Suter
, “
Robust dynamical decoupling
,”
Philos. Trans. R. Soc., A
370
,
4748
4769
(
2012
).
34.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
, “
Quantum sensing
,”
Rev. Mod. Phys.
89
,
035002
(
2017
).
35.
E.
Bauch
,
S.
Singh
,
J.
Lee
,
C. A.
Hart
,
J. M.
Schloss
,
M. J.
Turner
,
J. F.
Barry
,
L. M.
Pham
,
N.
Bar-Gill
,
S. F.
Yelin
, and
R. L.
Walsworth
, “
Decoherence of ensembles of nitrogen-vacancy centers in diamond
,”
Phys. Rev. B
102
,
134210
(
2020
).
36.
M.
Loretz
,
J. M.
Boss
,
T.
Rosskopf
,
H. J.
Mamin
,
D.
Rugar
, and
C. L.
Degen
, “
Spurious harmonic response of multipulse quantum sensing sequences
,”
Phys. Rev. X
5
,
021009
(
2015
).
37.
D. A.
Broadway
,
N.
Dontschuk
,
A.
Tsai
,
S. E.
Lillie
,
C. T.-K.
Lew
,
J. C.
McCallum
,
B. C.
Johnson
,
M. W.
Doherty
,
A.
Stacey
,
L. C. L.
Hollenberg
, and
J.-P.
Tetienne
, “
Spatial mapping of band bending in semiconductor devices using in situ quantum sensors
,”
Nat. Electron.
1
,
502
507
(
2018
).
38.
S.
Dhomkar
,
H.
Jayakumar
,
P. R.
Zangara
, and
C. A.
Meriles
, “
Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond
,”
Nano Lett.
18
,
4046
4052
(
2018
).
39.
D.
Bluvstein
,
Z.
Zhang
, and
A. C.
Bleszynski Jayich
, “
Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers
,”
Phys. Rev. Lett.
122
,
076101
(
2019
).
40.
J.-P.
Tetienne
,
R. W.
de Gille
,
D. A.
Broadway
,
T.
Teraji
,
S. E.
Lillie
,
J. M.
McCoey
,
N.
Dontschuk
,
L. T.
Hall
,
A.
Stacey
,
D. A.
Simpson
, and
L. C. L.
Hollenberg
, “
Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond
,”
Phys. Rev. B
97
,
085402
(
2018
).
41.
P.
Kehayias
,
A.
Jarmola
,
N.
Mosavian
,
I.
Fescenko
,
F. M.
Benito
,
A.
Laraoui
,
J.
Smits
,
L.
Bougas
,
D.
Budker
,
A.
Neumann
,
S. R. J.
Brueck
, and
V. M.
Acosta
, “
Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
,”
Nat. Commun.
8
,
188
(
2017
).
42.
G.
Jeschke
,
W.
Hoffbauer
, and
M.
Jansen
, “
A comprehensive nmr study of cubic and hexagonal boron nitride
,”
Solid State Nucl. Magn. Reson.
12
,
1
7
(
1998
).
43.
A. H.
Silver
and
P. J.
Bray
, “
NMR study of bonding in some solid boron compounds
,”
J. Chem. Phys.
32
,
288
292
(
1960
).
44.
I.
Lovchinsky
,
A. O.
Sushkov
,
E.
Urbach
,
N. P.
de Leon
,
S.
Choi
,
K.
De Greve
,
R.
Evans
,
R.
Gertner
,
E.
Bersin
,
C.
Müller
,
L.
McGuinness
,
F.
Jelezko
,
R. L.
Walsworth
,
H.
Park
, and
M. D.
Lukin
, “
Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic
,”
Science
351
,
836
841
(
2016
).
45.
T.
Lühmann
,
R.
John
,
R.
Wunderlich
,
J.
Meijer
, and
S.
Pezzagna
, “
Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond
,”
Nat. Commun.
10
,
4956
(
2019
).

Supplementary Material

You do not currently have access to this content.