Scalable quantum information processing requires that modular gate operations can be executed in parallel. The presence of crosstalk decreases the individual addressability, causing erroneous results during simultaneous operations. For superconducting qubits which operate in the microwave regime, electromagnetic isolation is often limited due to design constraints, leading to signal crosstalk that can deteriorate the quality of simultaneous gate operations. Here, we propose and demonstrate a method based on the alternative-current Stark effect for calibrating the microwave signal crosstalk. The method is suitable for processors based on fixed-frequency qubits, which are known for high coherence and simple control. The optimal compensation parameters can be reliably identified from a well-defined interference pattern. We implement the method on an array of seven superconducting qubits and show its effectiveness in removing the majority of crosstalk errors.

1.
F.
Altomare
,
K.
Cicak
,
M. A.
Sillanpää
,
M. S.
Allman
,
A. J.
Sirois
,
D.
Li
,
J. I.
Park
,
J. A.
Strong
,
J. D.
Teufel
,
J. D.
Whittaker
, and
R. W.
Simmonds
, “
Measurement crosstalk between two phase qubits coupled by a coplanar waveguide
,”
Phys. Rev. B
82
,
094510
(
2010
).
2.
M.
Khezri
,
J.
Dressel
, and
A. N.
Korotkov
, “
Qubit measurement error from coupling with a detuned neighbor in circuit QED
,”
Phys. Rev. A
92
,
052306
(
2015
).
3.
J.
Wenner
,
M.
Neeley
,
R. C.
Bialczak
,
M.
Lenander
,
E.
Lucero
,
A. D.
O'Connell
,
D.
Sank
,
H.
Wang
,
M.
Weides
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits
,”
Supercond. Sci. Technol.
24
,
065001
(
2011
).
4.
X.
Dai
,
D.
Tennant
,
R.
Trappen
,
A.
Martinez
,
D.
Melanson
,
M.
Yurtalan
,
Y.
Tang
,
S.
Novikov
,
J.
Grover
,
S.
Disseler
,
J.
Basham
,
R.
Das
,
D.
Kim
,
A.
Melville
,
B.
Niedzielski
,
S.
Weber
,
J.
Yoder
,
D.
Lidar
, and
A.
Lupascu
, “
Calibration of flux crosstalk in large-scale flux-tunable superconducting quantum circuits
,”
PRX Quantum
2
,
040313
(
2021
).
5.
D. M.
Abrams
,
N.
Didier
,
S. A.
Caldwell
,
B. R.
Johnson
, and
C. A.
Ryan
, “
Methods for measuring magnetic flux crosstalk between tunable transmons
,”
Phys. Rev. Appl.
12
,
064022
(
2019
).
6.
S.
Huang
,
B.
Lienhard
,
G.
Calusine
,
A.
Vepsäläinen
,
J.
Braumüller
,
D. K.
Kim
,
A. J.
Melville
,
B. M.
Niedzielski
,
J. L.
Yoder
,
B.
Kannan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Microwave package design for superconducting quantum processors
,”
PRX Quantum
2
,
020306
(
2021
).
7.
P. A.
Spring
,
S.
Cao
,
T.
Tsunoda
,
G.
Campanaro
,
S. D.
Fasciati
,
J.
Wills
,
V.
Chidambaram
,
B.
Shteynas
,
M.
Bakr
,
P.
Gow
 et al., “
High coherence in a tileable 3D integrated superconducting circuit architecture
,” arXiv:2107.11140 (
2021
).
8.
P.
Mundada
,
G.
Zhang
,
T.
Hazard
, and
A.
Houck
, “
Suppression of qubit crosstalk in a tunable coupling superconducting circuit
,”
Phys. Rev. Appl.
12
,
054023
(
2019
).
9.
A.
Patterson
,
J.
Rahamim
,
T.
Tsunoda
,
P.
Spring
,
S.
Jebari
,
K.
Ratter
,
M.
Mergenthaler
,
G.
Tancredi
,
B.
Vlastakis
,
M.
Esposito
, and
P.
Leek
, “
Calibration of a cross-resonance two-qubit gate between directly coupled transmons
,”
Phys. Rev. Appl.
12
,
064013
(
2019
).
10.
P.
Zhao
,
K.
Linghu
,
Z.
Li
,
P.
Xu
,
R.
Wang
,
G.
Xue
,
Y.
Jin
, and
H.
Yu
, “
Quantum crosstalk analysis for simultaneous gate operations on superconducting qubits
,” arXiv:2110.12570 (
2021
).
11.
T.-Q.
Cai
,
X.-Y.
Han
,
Y.-K.
Wu
,
Y.-L.
Ma
,
J.-H.
Wang
,
Z.-L.
Wang
,
H.-Y.
Zhang
,
H.-Y.
Wang
,
Y.-P.
Song
, and
L.-M.
Duan
, “
Impact of spectators on a two-qubit gate in a tunable coupling superconducting circuit
,”
Phys. Rev. Lett.
127
,
060505
(
2021
).
12.
Z.
Chen
,
A.
Megrant
,
J.
Kelly
,
R.
Barends
,
J.
Bochmann
,
Y.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
E.
Jeffrey
,
J. Y.
Mutus
,
P. J. J.
O'Malley
,
C.
Neill
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Fabrication and characterization of aluminum airbridges for superconducting microwave circuits
,”
Appl. Phys. Lett.
104
,
052602
(
2014
).
13.
A.
Dunsworth
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Fowler
,
B.
Foxen
,
E.
Jeffrey
,
J.
Kelly
,
P. V.
Klimov
,
E.
Lucero
,
J. Y.
Mutus
,
M.
Neeley
,
C.
Neill
,
C.
Quintana
,
P.
Roushan
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
H.
Neven
,
J. M.
Martinis
, and
A.
Megrant
, “
A method for building low loss multi-layer wiring for superconducting microwave devices
,”
Appl. Phys. Lett.
112
,
063502
(
2018
).
14.
D.
Rosenberg
,
S. J.
Weber
,
D.
Conway
,
D.-R. W.
Yost
,
J.
Mallek
,
G.
Calusine
,
R.
Das
,
D.
Kim
,
M. E.
Schwartz
,
W.
Woods
,
J. L.
Yoder
, and
W. D.
Oliver
, “
Solid-state qubits: 3D integration and packaging
,”
IEEE Microwave Mag.
21
,
72
85
(
2020
).
15.
K.
Wei
,
E.
Magesan
,
I.
Lauer
,
S.
Srinivasan
,
D.
Bogorin
,
S.
Carnevale
,
G.
Keefe
,
Y.
Kim
,
D.
Klaus
,
W.
Landers
 et al., “
Quantum crosstalk cancellation for fast entangling gates and improved multi-qubit performance
,” arXiv:2106.00675 (
2021
).
16.
B. K.
Mitchell
,
R. K.
Naik
,
A.
Morvan
,
A.
Hashim
,
J. M.
Kreikebaum
,
B.
Marinelli
,
W.
Lavrijsen
,
K.
Nowrouzi
,
D. I.
Santiago
, and
I.
Siddiqi
, “
Hardware-efficient microwave-activated tunable coupling between superconducting qubits
,”
Phys. Rev. Lett.
127
,
200502
(
2021
).
17.
Y.
Sung
,
L.
Ding
,
J.
Braumüller
,
A.
Vepsäläinen
,
B.
Kannan
,
M.
Kjaergaard
,
A.
Greene
,
G. O.
Samach
,
C.
McNally
,
D.
Kim
,
A.
Melville
,
B. M.
Niedzielski
,
M. E.
Schwartz
,
J. L.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler
,” arXiv:2011.01261 (
2020
).
18.
M. C.
Collodo
,
J.
Herrmann
,
N.
Lacroix
,
C. K.
Andersen
,
A.
Remm
,
S.
Lazar
,
J.-C.
Besse
,
T.
Walter
,
A.
Wallraff
, and
C.
Eichler
, “
Implementation of conditional phase gates based on tunable ZZ interactions
,”
Phys. Rev. Lett.
125
,
240502
(
2020
).
19.
Y.
Xu
,
J.
Chu
,
J.
Yuan
,
J.
Qiu
,
Y.
Zhou
,
L.
Zhang
,
X.
Tan
,
Y.
Yu
,
S.
Liu
,
J.
Li
,
F.
Yan
, and
D.
Yu
, “
High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits
,”
Phys. Rev. Lett.
125
,
240503
(
2020
).
20.
J.
Stehlik
,
D. M.
Zajac
,
D. L.
Underwood
,
T.
Phung
,
J.
Blair
,
S.
Carnevale
,
D.
Klaus
,
G. A.
Keefe
,
A.
Carniol
,
M.
Kumph
,
M.
Steffen
, and
O. E.
Dial
, “
Tunable coupling architecture for fixed-frequency transmon superconducting qubits
,”
Phys. Rev. Lett.
127
,
080505
(
2021
).
21.
J.
Koch
,
T. M.
Yu
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the Cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
22.
J.
Chu
,
X.
He
,
Y.
Zhou
,
J.
Yuan
,
L.
Zhang
,
Q.
Guo
,
Y.
Hai
,
Z.
Han
,
C.-K.
Hu
,
W.
Huang
,
H.
Jia
,
D.
Jiao
,
Y.
Liu
,
Z.
Ni
,
X.
Pan
,
J.
Qiu
,
W.
Wei
,
Z.
Yang
,
J.
Zhang
,
Z.
Zhang
,
W.
Zou
,
Y.
Chen
,
X.
Deng
,
X.
Deng
,
L.
Hu
,
J.
Li
,
D.
Tan
,
Y.
Xu
,
T.
Yan
,
X.
Sun
,
F.
Yan
, and
D.
Yu
, “
Scalable algorithm simplification using quantum AND logic
,” arXiv:2112.14922 (
2021
).
23.
D. I.
Schuster
,
A.
Wallraff
,
A.
Blais
,
L.
Frunzio
,
R.-S.
Huang
,
J.
Majer
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Phys. Rev. Lett.
94
(
12
),
123602
(
2005
).
You do not currently have access to this content.