Springs are ubiquitous in a variety of scientific and engineering fields. However, the comprehensive study on mechanical properties of micro-spring has not been fully conducted yet due to a lack of reliable productions of varied-shaped micro-springs. Here, we report the design and manufacturing of triple-helix-shaped springs employing two-photon polymerization (TPP) technologies and present a systemic study on the mechanical properties of micro-springs particularly involving spring constants of k. To construct high-quality hollow microstructures, we optimize the TPP process by combining violet light post-treatment with a proper selection of cleaning liquid. Consequently, we demonstrate that the sensitives k can be actively tuned over a range of two orders of magnitude, from ∼1.5 to ∼108.2 μN/μm while maintaining a high resolution of ∼1 μN/μm. Furthermore, compression tests showcase an excellent agreement among all force-vs-displacement lineshapes, resulting in a small k fluctuation of <1%. On the whole, we expected that the modified TPP technique along with proposed helical springs opens an alternative avenue toward micro-scale force detection, leading to potential applications in the field of bio-sensing, where typical forces to be measured exist within a broad range from several piconewtons to several micronewtons.

1.
R.
Hooke
, “
De potentia restitutiva, or of spring explaining the power of springing bodies
,” in
Sixth Cutler Lecture
(John Martyn, 1678), Vol.
1678
, pp.
331
356
; available at https://ota.bodleian.ox.ac.uk/repository/xmlui/handle/20.500.12024/A44322.
2.
Y.
Chen
, “
Nanofabrication by electron beam lithography and its applications: A review
,”
Microelectron. Eng.
135
,
57
72
(
2015
).
3.
M. L.
Tseng
,
Z.-H.
Lin
,
H. Y.
Kuo
,
T.-T.
Huang
,
Y.-T.
Huang
,
T. L.
Chung
,
C. H.
Chu
,
J.-S.
Huang
, and
D. P.
Tsai
, “
Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality
,”
Adv. Opt. Mater.
7
,
1900617
(
2019
).
4.
D.
Zhao
,
A.
Han
, and
M.
Qiu
, “
Ice lithography for 3D nanofabrication
,”
Sci. Bull.
64
,
865
871
(
2019
).
5.
N.
Wang
,
M.
Zeisberger
,
U.
Hübner
, and
M. A.
Schmidt
, “
Nanotrimer enhanced optical fiber tips implemented by electron beam lithography
,”
Opt. Mater. Express
8
,
2246
2255
(
2018
).
6.
Y.
Hong
,
D.
Zhao
,
J.
Wang
,
J.
Lu
,
G.
Yao
,
D.
Liu
,
H.
Luo
,
Q.
Li
, and
M.
Qiu
, “
Solvent-free nanofabrication based on ice-assisted electron-beam lithography
,”
Nano Lett.
20
,
8841
8846
(
2020
).
7.
J.-F.
Xing
,
M.-L.
Zheng
, and
X.-M.
Duan
, “
Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery
,”
Chem. Soc. Rev.
44
,
5031
5039
(
2015
).
8.
K.-S.
Lee
,
D.-Y.
Yang
,
S. H.
Park
, and
R. H.
Kim
, “
Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications
,”
Polym. Adv. Technol.
17
,
72
82
(
2006
).
9.
Q.
Geng
,
D.
Wang
,
P.
Chen
, and
S.-C.
Chen
, “
Ultrafast multi-focus 3D nano-fabrication based on two-photon polymerization
,”
Nat. Commun.
10
,
2179
(
2019
).
10.
M.
Deubel
,
G.
Von Freymann
,
M.
Wegener
,
S.
Pereira
,
K.
Busch
, and
C. M.
Soukoulis
, “
Direct laser writing of three-dimensional photonic-crystal templates for telecommunications
,”
Nat. Mater.
3
,
444
447
(
2004
).
11.
J. K.
Gansel
,
M.
Thiel
,
M. S.
Rill
,
M.
Decker
,
K.
Bade
,
V.
Saile
,
G.
von Freymann
,
S.
Linden
, and
M.
Wegener
, “
Gold helix photonic metamaterial as broadband circular polarizer
,”
Science
325
,
1513
1515
(
2009
).
12.
J. K.
Hohmann
,
M.
Renner
,
E. H.
Waller
, and
G.
von Freymann
, “
Three-dimensional μ-printing: An enabling technology
,”
Adv. Opt. Mater.
3
,
1488
1507
(
2015
).
13.
K.
Sugioka
and
Y.
Cheng
, “
Femtosecond laser three-dimensional micro-and nanofabrication
,”
Appl. Phys. Rev.
1
,
041303
(
2014
).
14.
T.
Abele
,
T.
Messer
,
K.
Jahnke
,
M.
Hippler
,
M.
Bastmeyer
,
M.
Wegener
, and
K.
Göpfrich
, “
Two-photon 3D laser printing inside synthetic cells
,”
Adv. Mater.
34
,
2106709
(
2022
).
15.
T.
Bückmann
,
N.
Stenger
,
M.
Kadic
,
J.
Kaschke
,
A.
Frölich
,
T.
Kennerknecht
,
C.
Eberl
,
M.
Thiel
, and
M.
Wegener
, “
Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography
,”
Adv. Mater.
24
,
2710
2714
(
2012
).
16.
J.
Purtov
,
A.
Verch
,
P.
Rogin
, and
R.
Hensel
, “
Improved development procedure to enhance the stability of microstructures created by two-photon polymerization
,”
Microelectron. Eng.
194
,
45
50
(
2018
).
17.
M.
Power
,
A. J.
Thompson
,
S.
Anastasova
, and
G.-Z.
Yang
, “
A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization
,”
Small
14
,
1703964
(
2018
).
18.
A.
Nishiguchi
,
A.
Mourran
,
H.
Zhang
, and
M.
Moller
, “
In-gel direct laser writing for 3D-designed hydrogel composites that undergo complex self-shaping
,”
Adv. Sci.
5
,
1700038
(
2018
).
19.
A. J.
Thompson
,
M.
Power
, and
G.-Z.
Yang
, “
Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning
,”
Opt. Express
26
,
14186
14200
(
2018
).
20.
S.
Hu
,
X.
Cao
,
T.
Reddyhoff
,
D.
Puhan
,
S.-C.
Vladescu
,
J.
Wang
,
X.
Shi
,
Z.
Peng
,
A. J.
DeMello
, and
D.
Dini
, “
Liquid repellency enhancement through flexible microstructures
,”
Sci. Adv.
6
,
eaba9721
(
2020
).
21.
S.
Ushiba
,
K.
Masui
,
N.
Taguchi
,
T.
Hamano
,
S.
Kawata
, and
S.
Shoji
, “
Size dependent nanomechanics of coil spring shaped polymer nanowires
,”
Sci. Rep.
5
,
17152
(
2015
).
22.
B.
Li
,
B.
Gil
,
M.
Power
,
A.
Gao
,
S.
Treratanakulchai
,
S.
Anastasova
, and
G.-Z.
Yang
, “
Carbon-nanotube-coated 3D microspring force sensor for medical applications
,”
ACS Appl. Mater. Interfaces
11
,
35577
35586
(
2019
).
23.
E.
ToolBox
, see https://www.engineeringtoolbox.com/surface-tension-d\_962.html for “
Liquids Surface Tension—Water, Mercury, Oils and More
(
2005
)” (last accessed November 16, 2021).
24.
D.
Zhu
and
R.
Verduzco
, “
Ultralow surface tension solvents enable facile cof activation with reduced pore collapse
,”
ACS Appl. Mater. Interfaces
12
,
33121
33127
(
2020
).
25.
R.
Deshpande
,
D.-W.
Hua
,
D. M.
Smith
, and
C. J.
Brinker
, “
Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension
,”
J. Non-Cryst. Solids
144
,
32
44
(
1992
).
26.
X.
Li
,
S.
Bi
,
G.
Zhao
,
P.
Lu
, and
Y.
Wang
, “
Experiment on liquid density and surface tension of nonafluorobutylmethylether
,”
J. Xi'an Jiaotong Univ.
45
,
70
73
(
2011
).
27.
M. W.
Seto
,
B.
Dick
, and
M. J.
Brett
, “
Microsprings and microcantilevers: Studies of mechanical response
,”
J. Micromech. Microeng.
11
,
582
(
2001
).
28.
B.
Wen
,
Machine Design Handbook
(
China Machine Press
,
Beijing
,
China
,
2009
).
29.
B.
Corp
., see https://www.brukerafmprobes.com/ for “
Bruker AFM Probes Scanning Probe and Atomic Force Instrumentation
(
2021
)” (last accessed November 12, 2021).
30.
N.
Wang
,
W.
Yan
,
Y.
Qu
,
S.
Ma
,
S. Z.
Li
, and
M.
Qiu
, “
Intelligent designs in nanophotonics: From optimization towards inverse creation
,”
PhotoniX
2
,
1
35
(
2021
).
31.
E.
Bo
,
X.
Ge
,
Y.
Luo
,
X.
Wu
,
S.
Chen
,
H.
Liang
,
S.
Chen
,
X.
Yu
,
P.
Shum
,
J.
Mo
 et al., “
Cellular-resolution in vivo tomography in turbid tissue through digital aberration correction
,”
PhotoniX
1
,
9
(
2020
).
32.
R.
Fu
,
Y.
Su
,
R.
Wang
,
X.
Lin
,
X.
Jin
,
H.
Yang
,
W.
Du
,
X.
Shan
,
W.
Lv
, and
G.
Huang
, “
Single cell capture, isolation, and long-term in situ imaging using quantitative self-interference spectroscopy
,”
Cytometry, Part A
99
,
601
609
(
2021
).
33.
W.
Niu
,
L.
Fang
,
L.
Xu
,
X.
Li
,
H.
Ruikun
,
D.
Guo
, and
Z.
Qi
, “
Summary of research status and application of mems accelerometers
,”
J. Comput. Commun.
06
,
215
(
2018
).
34.
H. T.
Le
,
R. I.
Haque
,
Z.
Ouyang
,
S. W.
Lee
,
S. I.
Fried
,
D.
Zhao
,
M.
Qiu
, and
A.
Han
, “
Mems inductor fabrication and emerging applications in power electronics and neurotechnologies
,”
Microsyst. Nanoeng.
7
,
59
(
2021
).
35.
J. U.
Surjadi
,
L.
Gao
,
H.
Du
,
X.
Li
,
X.
Xiong
,
N. X.
Fang
, and
Y.
Lu
, “
Mechanical metamaterials and their engineering applications
,”
Adv. Eng. Mater.
21
,
1800864
(
2019
).
36.
M. R.
Nejadnik
,
H. C.
van der Mei
,
W.
Norde
, and
H. J.
Busscher
, “
Bacterial adhesion and growth on a polymer brush-coating
,”
Biomaterials
29
,
4117
4121
(
2008
).
37.
M.
Zou
,
C.
Liao
,
S.
Liu
,
C.
Xiong
,
C.
Zhao
,
J.
Zhao
,
Z.
Gan
,
Y.
Chen
,
K.
Yang
,
D.
Liu
 et al., “
Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements
,”
Light: Sci. Appl.
10
,
171
(
2021
).
38.
K. C.
Neuman
and
A.
Nagy
, “
Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy
,”
Nat. Methods
5
,
491
505
(
2008
).
39.
F.
Chowdhury
,
I. T.
Li
,
T. T.
Ngo
,
B. J.
Leslie
,
B. C.
Kim
,
J. E.
Sokoloski
,
E.
Weiland
,
X.
Wang
,
Y. R.
Chemla
,
T. M.
Lohman
 et al., “
Defining single molecular forces required for notch activation using nano yoyo
,”
Nano Lett.
16
,
3892
3897
(
2016
).
40.
P.
Saha
,
T.
Duanis-Assaf
, and
M.
Reches
, “
Fundamentals and applications of fluidfm technology in single-cell studies
,”
Adv. Mater. Interfaces
7
,
2001115
(
2020
).

Supplementary Material

You do not currently have access to this content.