In this work, both thermal and electrical transport properties of diamond-cubic Si (Si-I) and metastable R8 phases of Si (Si-XII) are comparatively studied by using first-principles calculations combined with the Boltzmann transport theory. The metastable Si-XII shows one magnitude lower lattice thermal conductivity than stable Si-I from 300 to 500 K, attributed from the stronger phonon scattering in three-phonon scattering processes of Si-XII. For electronic transport properties, although Si-XII with smaller bandgap (0.22 eV) shows a lower Seebeck coefficient, the electrical conductivities of anisotropic n-type Si-XII show considerable values along the x axis due to the small effective masses of electrons along this direction. The peaks of the thermoelectric figure of merit (ZT) in n-type Si-XII are higher than that of p-type ones along the same direction. Owing to the lower lattice thermal conductivity and optimistic electrical conductivity, Si-XII exhibits larger optimal ZT compared with Si-I in both p- and n-type doping. For n-type Si-XII, the optimal ZT values at 300, 400, and 500 K can reach 0.24, 0.43, and 0.63 along the x axis at carrier concentrations of 2.6×1019,4.1×1019, and 4.8×1019 cm−3, respectively. The reported results elucidate that the metastable Si could be integrated to the thermoelectric power generator.

1.
J.
Wei
,
L.
Yang
,
Z.
Ma
,
P.
Song
,
M.
Zhang
,
J.
Ma
,
F.
Yang
, and
X.
Wang
,
J. Mater. Sci.
55
,
12642
12704
(
2020
).
2.
L.
Zhang
,
X.
Shi
,
Y.
Yang
, and
Z.
Chen
,
Mater. Today
46
,
62
108
(
2021
).
3.
L.
Weber
and
E.
Gmelin
,
Appl. Phys. A
53
,
136
140
(
1991
).
4.
S.
Ju
,
X.
Liang
, and
X.
Xu
,
J. Appl. Phys.
110
,
054318
(
2011
).
5.
V.
Kessler
,
D.
Gautam
,
T.
Hülser
,
M.
Spree
,
R.
Theissmann
,
M.
Winterer
,
H.
Wiggers
,
G.
Schierning
, and
R.
Schmechel
,
Adv. Eng. Mater.
15
,
379
(
2013
).
6.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
167
(
2008
).
7.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J. K.
Yu
,
W. A.
Goddard Iii
, and
J. R.
Heath
,
Nature
451
,
168
171
(
2008
).
8.
J.
Shiomi
,
APL Mater.
4
,
104504
(
2016
).
9.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
2934
2936
(
2003
).
10.
R.
Chen
,
A. I.
Hochbaum
,
P.
Murphy
,
J.
Moore
,
P.
Yang
, and
A.
Majumdar
,
Phys. Rev. Lett.
101
,
105501
(
2008
).
11.
B.
Haberl
,
M.
Guthrie
,
S. V.
Sinogeikin
,
G.
Shen
,
J. S.
Williams
, and
J. E.
Bradby
,
High Pressure Res.
35
,
99
(
2015
).
12.
B.
Haberl
,
T. A.
Strobel
, and
J. E.
Bradby
,
Appl. Phys. Rev.
3
,
040808
(
2016
).
13.
Z.
Zeng
,
Q.
Zeng
,
W. L.
Mao
, and
S.
Qu
,
J. Appl. Phys.
115
,
103514
(
2014
).
15.
R. H.
Wentorf
and
J. S.
Kasper
,
Science
139
,
338
(
1963
).
16.
B.
Chon
,
Y.
Ikoma
,
M.
Kohno
,
J.
Shiomi
,
M. R.
McCartney
,
D. J.
Smith
, and
Z.
Horita
,
Scr. Mater.
157
,
120
(
2018
).
17.
S.
Wippermann
,
M.
Vörös
,
D.
Rocca
,
A.
Gali
,
G.
Zimanyi
, and
G.
Galli
,
Phys. Rev. Lett.
110
,
046804
(
2013
).
18.
H.
Zhang
,
H.
Liu
,
K.
Wei
,
O. O.
Kurakevych
,
Y. L.
Godec
,
Z.
Liu
,
J.
Martin
,
M.
Guerrette
,
G. S.
Nolas
, and
T. A.
Strobel
,
Phys. Rev. Lett.
118
,
146601
(
2017
).
19.
C.
Shao
,
K.
Matsuda
,
S.
Ju
,
Y.
Ikoma
,
M.
Kohno
, and
J.
Shiomi
,
J. Appl. Phys.
129
,
085101
(
2021
).
20.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
21.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
22.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
23.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
(
2014
).
24.
G. K. H.
Madsen
,
J.
Carrete
, and
M. J.
Verstraete
,
Comput. Phys. Commun.
231
,
140
(
2018
).
25.
L.
He
,
F.
Liu
,
G.
Hautier
,
M. J. T.
Oliveira
,
M. A. L.
Marques
,
F. D.
Vila
,
J. J.
Rehr
,
G.-M.
Rignanese
, and
A.
Zhou
,
Phys. Rev. B
89
,
064305
(
2014
).
26.
B. G.
Pfrommer
,
M.
Cote
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
56
,
6662
(
1997
).
27.
B.
Liao
,
B.
Qiu
,
J.
Zhou
,
S.
Huberman
,
K.
Esfarjani
, and
G.
Chen
,
Phys. Rev. Lett.
114
,
115901
(
2015
).
28.
J.
Liu
,
S.
Ju
,
N.
Nishiyama
, and
J.
Shiomi
,
Phys. Rev. B
100
,
064303
(
2019
).
29.
S.
Ju
,
R.
Yoshida
,
C.
Liu
,
S.
Wu
,
K.
Hongo
,
T.
Tadano
, and
J.
Shiomi
,
Phys. Rev. Mater.
5
,
053801
(
2021
).
30.
G. A.
Slack
,
J. Phys. Chem. Solids
34
,
321
(
1973
).
31.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
,
5390
(
1986
).
32.
J.
Shen
,
Z.
Chen
,
L.
Zheng
,
W.
Li
, and
Y.
Pei
,
J. Mater. Chem. C
4
,
209
(
2016
).
33.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
34.
F.
Ricci
,
W.
Chen
,
U.
Aydemir
,
G. J.
Snyder
,
G.
Rignanese
,
A.
Jain
, and
G.
Hautier
,
Sci. Data
4
,
170085
(
2017
).
35.
J. H.
Bahk
and
A.
Shakouri
,
Appl. Phys. Lett.
105
,
052106
(
2014
).
36.
L. D.
Zhao
,
H. J.
Wu
,
S. Q.
Hao
,
C. I.
Wu
,
X. Y.
Zhou
,
K.
Biswas
,
J. Q.
He
,
T. P.
Hogan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravidc
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
6
,
3346
(
2013
).
37.
J. J.
Gong
,
A. J.
Hong
,
J.
Shuai
,
L.
Li
,
Z. B.
Yan
,
Z. F.
Renb
, and
J.-M.
Liu
,
Phys. Chem. Chem. Phys.
18
,
16566
(
2016
).
38.
J. H.
Bahk
and
A.
Shakouri
,
Phys. Rev. B
93
,
165209
(
2016
).
39.
M.
Jonson
and
G.
Mahan
,
Phys. Rev. B
21
,
4223
(
1980
).
40.
G. H.
Zhu
,
H.
Lee
,
Y. C.
Lan
,
X. W.
Wang
,
G.
Joshi
,
D. Z.
Wang
,
J.
Yang
,
D.
Vashaee
,
H.
Guilbert
,
A.
Pillitteri
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Phys. Rev. Lett.
102
,
196803
(
2009
).

Supplementary Material

You do not currently have access to this content.