The layered quasi one-dimensional compound TiS3 is remarkable for its optical properties, especially, photoconductivity. Up to now, photoconductivity in TiS3 was studied only at room temperature. Here, we report photoconductivity, δσ, of the TiS3 whiskers in the temperature range of 5–300 K under irradiation in the near-infrared region. With a temperature decrease from room temperature down to T ∼ 100 K, δσ grows moderately, dominated by the variation of the mobility of the electrons. The estimates based on the values of δσ give the recombination time ∼3–25 μs at 300 K. The results show that above ∼100 K, TiS3 behaves as a semiconductor, where electron–hole pairs are excited across the gap, while the recombination goes through transitions of the excited electrons to a donor level with a long lifetime. Below 60 K, a drop of δσ is likely to reveal a phase transition of electrons into a collective state. Another feature in δσ(T) is seen around 17 K, resembling the temperature variation of the conductivity. This feature indicates a drop in the mobility of the electrons. While the behavior of δσ(T) is consistent with the transition of electrons into a collective state, it is strikingly different from δσ(T) of the known quasi one-dimensional conductors with charge-density waves.

1.
S.
Furuseth
,
L.
Brattas
, and
A.
Kjekshus
, “
On the crystal structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3
,”
Acta Chem. Scand.
29a
,
623
(
1975
).
2.
I. G.
Gorlova
,
S. G.
Zybtsev
,
V. Y.
Pokrovskii
,
N. B.
Bolotina
,
S. Y.
Gavrilkin
,
A. Y.
Tsvetkov
, and
A. N.
Titov
, “
Magnetotransport and power-law I-V curves of the layered quasi one-dimensional compound TiS3
,”
Physica B
460
,
11–15
(
2015
).
3.
E.
Finkman
and
B.
Fisher
, “
Electrical transport measurements in TiS3
,”
Solid State Commun.
50
,
25
(
1984
).
4.
J. O.
Island
,
M.
Buscema
,
M.
Barawi
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
I. J.
Ferrer
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
, “
Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors
,”
Adv. Opt. Mater.
2
,
641
(
2014
).
5.
A. S.
Shkvarin
,
Y. M.
Yarmoshenko
,
M. V.
Yablonskikh
,
A. I.
Merentsov
, and
A. N.
Titov
, “
An x-ray spectroscopy study of the electronic structure of TiS3
,”
J. Struct. Chem.
55
,
1039
(
2014
).
6.
H.
Yi
,
T.
Komesu
,
S.
Gilbert
,
G.
Hao
,
A.
Yost
,
A.
Lipatov
,
A.
Sinitskii
,
J.
Avila
,
C.
Chen
,
M. C.
Asensio
, and
P. A.
Dowben
, “
The band structure of the quasi-one-dimensional layered semiconductor TiS3(001)
,”
Appl. Phys. Lett.
112
,
052102
(
2018
).
7.
H. G.
Grimmeis
,
A.
Rabenau
,
H.
Hann
, and
P.
Neiss
, “
On the electrical and optical properties of various chalcogenides of elements of subgroup IV
,”
Z. Elecktrochem.
65
,
776
(
1961
) (in German).
8.
C.
Huang
,
E.
Zhang
,
X.
Yuan
,
W.
Wang
,
Y.
Liu
,
C.
Zhang
,
J.
Ling
,
S.
Liu
, and
F.
Xiu
, “
Tunable charge density wave in TiS3 nanoribbons
,”
Chin. Phys. B
26
,
067302
(
2017
).
9.
M.-P.
Lu
,
Y.-T.
Chang
,
W.-H.
Peng
,
M.-Y.
Lu
, and
L.-J.
Chen
, “
Surface morphology-modulated electrical conductivity behavior in 2D anisotropic exfoliated nanoribbons
,”
2D Mater.
8
,
045025
(
2021
).
10.
N.
Papadopoulos
,
E.
Flores
,
K.
Watanabe
,
T.
Taniguchi
,
J. R.
Ares
,
C.
Sanchez
,
I. J.
Ferrer
,
A.
Castellanos-Gomez
,
G. A.
Steele1
, and
H. S. J.
van der Zant
, “
Multi-terminal electronic transport in boron nitride encapsulated TiS3 nanosheets
,”
2D Mater.
7
,
015009
(
2020
).
11.
I.
Gorlova
,
V. Y.
Pokrovskii
,
A. V.
Frolov
, and
A. P.
Orlov
, “
Comment on ‘Gate-controlled metal–insulator transition in TiS3 nanowire field-effect transistors
,’”
ACS Nano
13
,
8495
(
2019
).
12.
P.-L.
Hsieh
,
C. M.
Jackson
, and
G.
Grüner
, “
Disorder effects in the linear chain compound TiS3
,”
Solid State Commun.
46
,
505
(
1983
).
13.
I. G.
Gorlova
and
V. Y.
Pokrovskii
, “
Collective conduction mechanism in a quasi-one-dimensional TiS3 compound
,”
JETP Lett.
90
,
295
(
2009
).
14.
M.
Randle
,
A.
Lipatov
,
A.
Kumar
,
C.-P.
Kwan
,
J.
Nathawat
,
B.
Barut
,
S.
Yin
,
K.
He
,
N.
Arabchigavkani
,
R.
Dixit
,
T.
Komesu
,
J.
Avila
,
M.
Asensio
,
P. A.
Dowben
,
A.
Sinitskii
,
U.
Singisetti
, and
J. P.
Bird
, “
Gate-controlled metal–insulator transition inTiS3 nanowire field-effect transistors
,”
ACS Nano
13
,
803
(
2019
).
15.
I. N.
Trunkin
,
I. G.
Gorlova
,
N. B.
Bolotina
,
V. I.
Bondarenko
,
Y. M.
Chesnokov
, and
A. L.
Vasiliev
, “
Defect structure of TiS3 single crystals with different resistivity
,”
J. Mater. Sci.
56
,
2150
(
2021
).
16.
M. D.
Randle
,
A.
Lipatov
,
I.
Mansaray
,
J. E.
Han
,
A.
Sinitskii
, and
J. P.
Bird
, “
Collective states and charge density waves in the group IV transition metal trichalcogenides
,”
Appl. Phys. Lett.
118
,
210502
(
2021
).
17.
I. G.
Gorlova
,
S. G.
Zybtsev
, and
V. Y.
Pokrovskii
, “
Conductance anisotropy and the power-law current-voltage characteristics along and across the layers of the TiS3 quasi-one-dimensional layered semiconductor
,”
JETP Lett.
100
,
256
(
2014
).
18.
I. G.
Gorlova
,
A. V.
Frolov
,
A. P.
Orlov
,
V. Y.
Pokrovskii
, and
W. W.
Pai
, “
Field effect in the linear and nonlinear conductivity of the layered quasi-one-dimensional semiconductor TiS3
,”
JETP Lett.
110
,
417
(
2019
).
19.
G.
Gorlova
,
V. Y.
Pokrovskii
,
S. Y.
Gavrilkin
, and
A. Y.
Tsvetkov
, “
Change in the sign of the magnetoresistance and the two-dimensional conductivity of the layered quasi-one-dimensional semiconductor TiS3
,”
JETP Lett.
107
,
175
(
2018
).
20.
J.
Dai
and
X. C.
Zeng
, “
Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility
,”
Angew. Chem. Int. Ed.
54
,
7572
(
2015
).
21.
I. J.
Ferrer
,
J. R.
Ares
,
J. M.
Clamagirand
,
M.
Barawi
, and
C.
Sánchez
, “
Optical properties of titanium trisulphide (TiS3) thin films
,”
Thin Solid Films
535
,
398
(
2013
).
22.
E.
Guilmeau
,
D.
Berthebaud
,
P.
Misse
,
S.
Hébert
,
O.
Lebedev
,
D.
Chateigner
,
C.
Martin
, and
A.
Maignan
, “
ZrSe3-type variant of TiS3: Structure and thermoelectric properties
,”
Chem. Mater.
26
,
5585
(
2014
).
23.
G. L.
Holleck
and
J. R.
Drilscoll
, “
Transition metal sulfides as cathodes for secondary lithium batteries—II. Titanium sulfides
,”
Electrochim. Acta
22
,
647
(
1977
).
24.
J. O.
Island
,
A. J.
Molina-Mendoza
,
M.
Barawi
,
R.
Biele
,
E.
Flores
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
H. S. J.
van der Zant1
,
R.
D'Agosta
,
I. J.
Ferrer
, and
A.
Castellanos-Gomez
, “
Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides
,”
2D Mater.
4
,
022003
(
2017
).
25.
J. O.
Island
,
M.
Barawi
,
R.
Biele
,
A.
Almazán
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
H. S. J.
van der Zant
,
J. V.
Álvarez
,
R.
D'Agosta
,
I. J.
Ferrer
, and
A.
Castellanos-Gomez
, “
TiS3 transistors with tailored morphology and electrical properties
,”
Adv. Mater.
27
,
2595
(
2015
).
26.
F.
Iyikanat
,
R. T.
Senger
,
F. M.
Peeters
, and
H.
Sahin
, “
Quantum-transport characteristics of a p–n junction on single-layer TiS3
,”
ChemPhysChem
17
,
3985
(
2016
).
27.
A.
Lipatov
,
P. M.
Wilson
,
M.
Shekhirev
,
J. D.
Teeter
,
R.
Netusila
, and
A.
Sinitskii
, “
Few-layered titanium trisulfide (TiS3) field-effect transistors
,”
Nanoscale
7
,
12291
(
2015
).
28.
A. J.
Molina-Mendoza
,
J. O.
Island
,
W. S.
Paz
,
J. M.
Clamagirand
,
J. R.
Ares
,
E.
Flores
,
F.
Leardini
,
C.
Sánchez
,
N.
Agraït
,
G.
Rubio-Bollinger
,
H. S. J.
van der Zant
,
I. J.
Ferrer
,
J. J.
Palacios
, and
A.
Castellanos-Gomez
, “
High current density electrical breakdown of TiS3 nanoribbon-based field-effect transistors
,”
Adv. Funct. Mater.
27
,
1605647
(
2017
).
29.
A. J.
Molina-Mendoza
,
M.
Barawi
,
R.
Biele
,
E.
Flores
,
J. R.
Ares
,
C.
Sánchez
,
G.
Rubio-Bollinger
,
N.
Agraït
,
R.
D'Agosta
,
I. J.
Ferrer
, and
A.
Castellanos-Gomez
, “
Electronic bandgap and exciton binding energy of layered semiconductor TiS3
,”
Adv. Electron. Mater.
1
,
1500126
(
2015
).
30.
Q.
Cui
,
A.
Lipatov
,
J. S.
Wilt
,
M.
Bellus
,
A.
Sinitskii
,
X.-C.
Zeng
,
J.
Wu
, and
H.
Zhao
, “
Time-resolved measurements of photocarrier dynamics in TiS3 nanoribbons
,”
ACS Appl. Mater. Interfaces
8
,
18334
(
2016
).
31.
S.
Liu
,
W.
Xiao
,
M.
Zhong
,
L.
Pan
,
X.
Wang
,
H.-X.
Deng
,
J.
Liu
,
J.
Li
, and
Z.
Wei
, “
Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)
,”
Nanotechnology
29
,
184002
(
2018
).
32.
A.
Khatibi
,
R. H.
Godiksen
,
S. B.
Basuvalingam
,
D.
Pellegrino
,
A.
Bol
,
B.
Shokri
, and
A. G.
Curto
, “
Anisotropic infrared light emission from quasi-1D layered TiS3
,”
2D Mater.
7
,
015022
(
2020
).
33.
We estimated the power densities of the illumination to be 1–4 orders of magnitude above those applied in the present experiments.
34.
N.
Ogawa
,
A.
Shiraga
,
R.
Kondo
,
S.
Kagoshima
, and
K.
Miyano
, “
Photocontrol of dynamic phase transition in the charge-density wave material K0.3MoO3
,”
Phys. Rev. Lett.
87
,
256401
(
2001
).
35.
N.
Ogawa
,
K.
Miyano
, and
S.
Brazovski
, “
Optical excitation in the creep phase of plastic charge-density waves
,”
Phys Rev B
71
,
075118
(
2005
).
36.
S. V.
Zaitsev-Zotov
,
V. F.
Nasretdinova
, and
V. E.
Minakova
, “
Charge-density waves physics revealed by photoconduction
,”
Physica B
460
,
174
(
2015
).
37.
S. V.
Zaitsev-Zotov
and
V. E.
Minakova
, “
Evidence of collective charge transport in the Ohmic regime of o-TaS3 in the charge-density-wave state by a photoconduction study
,”
Phys. Rev. Lett.
97
,
266404
(
2006
).
38.
S. V.
Zaitsev-Zotov
and
V. E.
Minakova
, “
Photoconduction and photocontrolled collective effects in the Peierls conductor TaS3
,”
Pis'ma Zh. Eksp. Teor. Fiz.
79
,
550
(
2004
)
S. V.
Zaitsev-Zotov
and
V. E.
Minakova
, [
JETP Lett.
79
,
550
(
2004
)].
39.
V. E.
Minakova
,
V. F.
Nasretdinova
, and
S. V.
Zaitsev-Zotov
, “
Photoconduction in the Peierls conductor monoclinic TaS3
,”
Physica B
460
,
185
(
2015
).
40.
S. G.
Zybtsev
,
V. Y.
Pokrovskii
,
V. F.
Nasretdinova
, and
S. V.
Zaitsev-Zotov
, “
Anomalous photoconduction of low-temperature charge-density wave in NbS3-II as a physical basis of a method for detection of weak signals
,”
J. Commun. Technol. Electron.
63
,
1053
(
2018
).
41.
S. G.
Zybtsev
,
Y.
Pokrovskii
, and
S. A.
Nikonov
, “
A similar growth was observed in the monoclinic phase of NbS3
” (
2018
) (unpublished).
42.
S. M.
Ryvkin
,
Photoelectric Phenomena in Semiconductors
(
FizMatGiz
,
Moscow
,
1963
) (in Russian).
43.
T. R.
Moss
,
G. J.
Burrel
, and
B.
Ellis
,
Semiconductor Opto-Electronics
(
Butterworth & Co Ltd
.,
London
,
1973
).
44.
N. B.
Bolotina
,
I. G.
Gorlova
,
I. A.
Verin
,
A. N.
Titov
, and
A. V.
Arakcheeva
, “
Defect structure of TiS3 single crystals of the A-ZrSe3 type
,”
Crystallogr. Rep.
61
,
923
(
2016
).
45.
K. N.
Boldyrev
,
E. V.
Mostovshchikova
,
P. A.
Agzamova
,
A. A.
Titov
, and
A. N.
Titov
(unpublished).
46.
The δσ(W) dependences were studied in the range of 8–40 K at LED currents 1 μA–8 mA (W varying from ∼1 μW/cm2 to ∼8 mW/cm2). The exponent, d ln(δσ)/dW, was estimated to fall with temperature increase from 0.8–1 at 8 K down to about 0.5 at 40 K.
47.
For Sample No. 3 the δσ(T) dependence was studied in two cycles. During the first day data above 35 K were gathered. On the second day the σ(T) curve changed strongly showing anomalous behavior above 50 K. Therefore, only the lower-temperature data gathered in this cycle are presented in Fig. 3.
48.
It is not quite clear if TiS3 is a direct-band semiconsuctor, or the gap is indirect, like in Si (see Refs. 13–17 in Ref. 6).
49.
B. I.
Shklovskii
and
A. L.
Efros
,
Electronic Properties of Doped Semiconductors
, Part of the Springer Series in Solid-State Sciences Book Series (SSSOL) (Springer-Verlag, Berlin,
1984
), Vol. 45, https://link.springer.com/book/10.1007/978-3-662-02403-4#toc.
50.
T. L.
Adelman
,
S.
Zaitsev-Zotov
, and
R. E.
Thorne
, “
Field-effect modulation of charge-density-wave transport in NbSe3 and TaS3
,”
Phys. Rev. Lett.
74
,
5264
(
1995
).
51.
L. V.
Keldysh
and
Yu. V.
Kopaev
, “
Possible instability of the semimetallic state toward coulomb interaction
,”
Fiz. Tverd. Tela
6
,
2791
(
1964
)
L. V.
Keldysh
and
Yu. V.
Kopaev
, [
Sov. Phys.-Solid State
6
,
2219
(
1965
)].
52.
W.
Kohn
, “
Excitonic phases
,”
Phys. Rev. Lett.
19
,
439
(
1967
).

Supplementary Material

You do not currently have access to this content.