THz polarization control upon generation is a crucially missing functionality. THz spintronic emitters based on the inverse spin Hall effect (ISHE) allow for this by the strict implicit orthogonality between their magnetization state and the emitted polarization. This control was until now only demonstrated using cumbersome external magnetic field biasing to impose a polarization direction. We present here an efficient voltage control of the polarization state of terahertz spintronic emitters. Using a ferromagnetic spin pumping multilayer exhibiting simultaneously strong uniaxial magnetic anisotropy and magnetostriction in a crossed configuration, an emitter is achieved where, in principle, the stable magnetization direction can be fully and reversibly controlled over a 90° angle span only by an electric voltage. To achieve this, an engineered rare-earth based ferromagnetic multilayer is deposited on a piezoelectric (1x)[Pb(Mg0.33Nb0.66)O3]x[PbTiO3] (PMN-PT) substrate. We demonstrate experimentally a reversible 70° THz polarization rotation by sweeping the substrate voltage over 400 V. This demonstration allows for a fully THz polarization controlled ISHE spintronic terahertz emitter not needing any control of the magnetic bias.

1.
T.
Kampfrath
,
M.
Battiato
,
P.
Maldonado
,
G.
Eilers
,
J.
Nötzold
,
S.
Mährlein
,
V.
Zbarsky
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Blügel
,
M.
Wolf
,
I.
Radu
,
P. M.
Oppeneer
, and
M.
Münzenberg
, “
Terahertz spin current pulses controlled by magnetic heterostructures
,”
Nat. Nanotechnol.
8
,
256
260
(
2013
).
2.
T.
Seifert
,
S.
Jaiswal
,
U.
Martens
,
J.
Hannegan
,
L.
Braun
,
P.
Maldonado
,
F.
Freimuth
,
A.
Kronenberg
,
J.
Henrizi
,
I.
Radu
,
E.
Beaurepaire
,
Y.
Mokrousov
,
P. M.
Oppeneer
,
M.
Jourdan
,
G.
Jakob
,
D.
Turchinovich
,
L. M.
Hayden
,
M.
Wolf
,
M.
Münzenberg
,
M.
Kläui
, and
T.
Kampfrath
, “
Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
,”
Nat. Photonics
10
,
483
488
(
2016
).
3.
E. T.
Papaioannou
,
G.
Torosyan
,
S.
Keller
,
L.
Scheuer
,
M.
Battiato
,
V. K.
Mag-Usara
,
J.
L'Huillier
,
M.
Tani
, and
R.
Beigang
, “
Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths
,”
IEEE Trans. Magn.
54
,
1
5
(
2018
).
4.
R.
Kohlhaas
,
S.
Breuer
,
L.
Liebermeister
,
S.
Nellen
,
M.
Deumer
,
M.
Schell
,
M.
Semtsiv
,
W.
Masselink
, and
B.
Globisch
, “
637 μw emitted terahertz power from photoconductive antennas based on rhodium doped InGaAs
,”
Appl. Phys. Lett.
117
,
131105
(
2020
).
5.
S.-W.
Huang
,
E.
Granados
,
W. R.
Huang
,
K.-H.
Hong
,
L. E.
Zapata
, and
F. X.
Kärtner
, “
High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate
,”
Opt. Lett.
38
,
796
(
2013
).
6.
M. T.
Hibberd
,
D. S.
Lake
,
N. A.
Johansson
,
T.
Thomson
,
S. P.
Jamison
, and
D. M.
Graham
, “
Magnetic-field tailoring of the terahertz polarization emitted from a spintronic source
,”
Appl. Phys. Lett.
114
,
031101
(
2019
).
7.
T.
Nagashima
and
M.
Hangyo
, “
Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry
,”
Appl. Phys. Lett.
79
,
3917
3919
(
2001
).
8.
X.
Chen
,
E. P.
Parrott
,
Z.
Huang
,
H.-P.
Chan
, and
E.
Pickwell-MacPherson
, “
Robust and accurate terahertz time-domain spectroscopic ellipsometry
,”
Photonics Res.
6
,
768
775
(
2018
).
9.
O.
Gueckstock
,
L.
Nádvorník
,
T. S.
Seifert
,
M.
Borchert
,
G.
Jakob
,
G.
Schmidt
,
G.
Woltersdorf
,
M.
Kläui
,
M.
Wolf
, and
T.
Kampfrath
, “
Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz
,”
Optica
8
,
1013
(
2021
).
10.
D. M.
Nenno
,
L.
Scheuer
,
D.
Sokoluk
,
S.
Keller
,
G.
Torosyan
,
A.
Brodyanski
,
J.
Lösch
,
M.
Battiato
,
M.
Rahm
,
R. H.
Binder
,
H. C.
Schneider
,
R.
Beigang
, and
E. T.
Papaioannou
, “
Modification of spintronic terahertz emitter performance through defect engineering
,”
Sci. Rep.
9
,
13348
(
2019
).
11.
G.
Torosyan
,
S.
Keller
,
L.
Scheuer
,
R.
Beigang
, and
E. T.
Papaioannou
, “
Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures
,”
Sci. Rep.
8
,
1311
(
2018
).
12.
Q.
Zhang
,
Y.
Yang
,
Z.
Luo
,
Y.
Xu
,
R.
Nie
,
X.
Zhang
, and
Y.
Wu
, “
Terahertz emission from an exchange-coupled synthetic antiferromagnet
,”
Phys. Rev. Appl.
13
,
054016
(
2020
).
13.
Y.
Ogasawara
,
Y.
Sasaki
,
S.
Iihama
,
A.
Kamimaki
,
K. Z.
Suzuki
, and
S.
Mizukami
, “
Laser-induced terahertz emission from layered synthetic magnets
,”
Appl. Phys. Express
13
,
063001
(
2020
).
14.
M.
Fix
,
R.
Schneider
,
J.
Bensmann
,
S.
Michaelis De Vasconcellos
,
R.
Bratschitsch
, and
M.
Albrecht
, “
Thermomagnetic control of spintronic THz emission enabled by ferrimagnets
,”
Appl. Phys. Lett.
116
,
012402
(
2020
).
15.
M.
Fix
,
R.
Schneider
,
S.
Michaelis De Vasconcellos
,
R.
Bratschitsch
, and
M.
Albrecht
, “
Spin valves as magnetically switchable spintronic THz emitters
,”
Appl. Phys. Lett.
117
,
132407
(
2020
).
16.
D.
Kong
,
X.
Wu
,
B.
Wang
,
T.
Nie
,
M.
Xiao
,
C.
Pandey
,
Y.
Gao
,
L.
Wen
,
W.
Zhao
,
C.
Ruan
,
Y.
Li
, and
L.
Wang
, “
Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations
,”
Adv. Opt. Mater.
7
,
1900487
(
2019
).
17.
D.
Yang
,
J.
Liang
,
C.
Zhou
,
L.
Sun
,
R.
Zheng
,
S.
Luo
,
Y.
Wu
, and
J.
Qi
, “
Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure
,”
Adv. Opt. Mater.
4
,
1944
1949
(
2016
).
18.
P.
Koleják
,
G.
Lezier
,
K.
Postava
,
J.-F.
Lampin
,
N.
Tiercelin
, and
M.
Vanwolleghem
, “
360° polarization control of terahertz spintronic emitters using uniaxial FeCo/TbCo2/FeCo trilayers
,” arXiv:2111.07118 (
2021
).
19.
A.
Debray
,
A.
Ludwig
,
T.
Bourouina
,
A.
Asaoka
,
N.
Tiercelin
,
G.
Reyne
,
T.
Oki
,
E.
Quandt
,
H.
Muro
, and
H.
Fujita
, “
Application of a multilayered magnetostrictive film to a micromachined 2D optical scanner
,”
Microelectromech. Syst., J.
13
,
264
271
(
2004
).
20.
Y.
Dusch
,
N.
Tiercelin
,
A.
Klimov
,
S.
Giordano
,
V.
Preobrazhensky
, and
P.
Pernod
, “
Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor
,”
J. Appl. Phys.
113
,
17C719
17C714
(
2013
).
21.
H.
Cheng
,
Q.
Huang
,
H.
He
,
Z.
Zhao
,
H.
Sun
,
Q.
Wu
,
Z.
Jiang
,
J.
Wang
,
H.
Huang
,
Z.
Fu
, and
Y.
Lu
, “
Giant electrical modulation of terahertz emission in Pb(Mg1/3Nb2/3)0.7Ti0.3O3/CoFeB/Pt structure
,”
Phys. Rev. Appl.
16
,
054011
(
2021
).
22.
F.
Wang
,
L.
Luo
,
D.
Zhou
,
X.
Zhao
, and
H.
Luo
, “
Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic (0.71Pb(Mg1/3Nb2/3)O30.29PbTiO3) single crystal
,”
Appl. Phys. Lett.
90
,
212903
(
2007
).
23.
A.
Klimov
,
N.
Tiercelin
,
V.
Preobrazhensky
, and
P.
Pernod
, “
Inhomogeneous spin reorientation transition (SRT) in giant magnetostrictive TbCo2/FeCo multilayers
,”
IEEE Trans. Mag.
42
,
3090
3092
(
2006
).
25.
T.
Wu
,
P.
Zhao
,
M.
Bao
,
A.
Bur
,
J. L.
Hockel
,
K.
Wong
,
K. P.
Mohanchandra
,
C. S.
Lynch
, and
G. P.
Carman
, “
Domain engineered switchable strain states in ferroelectric (011)[Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x(PMN-PT, x ≈ 0.32) single crystals
,”
J. Appl. Phys.
109
,
124101
(
2011
).
26.
E. V.
Colla
,
N. K.
Yushin
, and
D.
Viehland
, “
Dielectric properties of (PMN)(1-x)(PT)x single crystals for various electrical and thermal histories
,”
J. Appl. Phys.
83
,
3298
3304
(
1998
).
27.
J.
Juraszek
,
A.
Grenier
,
J.
Teillet
,
N.
Tiercelin
,
F.
Petit
,
J. B.
Youssef
, and
M.
Toulemonde
, “
Swift ion irradiation of magnetostrictive multilayers
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
245
,
157
160
(
2006
).
28.
J.
Ben Youssef
,
N.
Tiercelin
,
F.
Petit
,
H.
Le Gall
,
V.
Preobrazhensky
, and
P.
Pernod
, “
Statics and dynamics in giant magnetostrictive TbxFe1x/Fe0.6Co0.4 multilayers for MEMS
,”
IEEE Trans. Mag.
38
(
5
),
2817
2819
(
2002
).
29.
G.
Lezier
,
P.
Koleják
,
J.-F.
Lampin
,
K.
Postava
,
M.
Vanwolleghem
, and
N.
Tiercelin
(
2021
), “Fully reversible magnetoelectric voltage controlled THz polarization rotation in magnetostrictive spintronic emitters on PMN-PT,”
Zenodo
, Dataset
You do not currently have access to this content.