Finding ways to achieve switching between magnetic states at the fastest possible timescale that simultaneously dissipates the least amount of energy is one of the main challenges in magnetism. Antiferromagnets exhibit intrinsic dynamics in the THz regime, the highest among all magnets, and are, therefore, ideal candidates to address this energy-time dilemma. Here, we study theoretically the THz-driven parametric excitation of antiferromagnetic magnon-pairs at the edge of the Brillouin zone and explore the potential for switching between two stable oscillation states. Using a semi-classical theory, we predict that switching can occur at the femtosecond timescale with an energy dissipation down to a few zepto Joule. This result touches the thermodynamical bound of the Landauer principle and approaches the quantum speed limit up to 5 orders of magnitude closer than demonstrated with magnetic systems so far.

1.
C. D.
Stanciu
,
F.
Hansteen
,
A. V.
Kimel
,
A.
Kirilyuk
,
A.
Tsukamoto
,
A.
Itoh
, and
T.
Rasing
, “
All-optical magnetic recording with circularly polarized light
,”
Phys. Rev. Lett.
99
,
047601
(
2007
).
2.
I.
Radu
,
K.
Vahaplar
,
C.
Stamm
,
T.
Kachel
,
N.
Pontius
,
H. A.
Dürr
,
T. A.
Ostler
,
J.
Barker
,
R. F. L.
Evans
,
R. W.
Chantrell
,
A.
Tsukamoto
,
A.
Itoh
,
A.
Kirilyuk
,
T.
Rasing
, and
A. V.
Kimel
, “
Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins
,”
Nature
472
,
205
208
(
2011
).
3.
T.
Ostler
,
J.
Barker
,
R.
Evans
,
R.
Chantrell
,
U.
Atxitia
,
O.
Chubykalo-Fesenko
,
S. E.
Moussaoui
,
L.
Guyader
,
E.
Mengotti
,
L.
Heyderman
,
F.
Nolting
,
A.
Tsukamoto
,
A.
Itoh
,
D.
Afanasiev
,
B.
Ivanov
,
A.
Kalashnikova
,
K.
Vahaplar
,
J.
Mentink
,
A.
Kirilyuk
, and
A.
Kimel
, “
Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet
,”
Nat. Commun.
3
,
666
(
2012
).
4.
J. H.
Mentink
,
J.
Hellsvik
,
D. V.
Afanasiev
,
B. A.
Ivanov
,
A.
Kirilyuk
,
A. V.
Kimel
,
O.
Eriksson
,
M. I.
Katsnelson
, and
T.
Rasing
, “
Ultrafast spin dynamics in multisublattice magnets
,”
Phys. Rev. Lett.
108
,
057202
(
2012
).
5.
K.
Vahaplar
,
A. M.
Kalashnikova
,
A. V.
Kimel
,
D.
Hinzke
,
U.
Nowak
,
R.
Chantrell
,
A.
Tsukamoto
,
A.
Itoh
,
A.
Kirilyuk
, and
T.
Rasing
, “
Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state
,”
Phys. Rev. Lett.
103
,
117201
(
2009
).
6.
C.-H.
Lambert
,
S.
Mangin
,
B.
Varaprasad
,
Y.
Takahashi
,
M.
Hehn
,
M.
Cinchetti
,
G.
Malinowski
,
K.
Hono
,
Y.
Fainman
,
M.
Aeschlimann
, and
E.
Fullerton
, “
All-optical control of ferromagnetic thin films and nanostructures
,”
Science
345
,
1337
(
2014
).
7.
M. S.
El Hadri
,
P.
Pirro
,
C.-H.
Lambert
,
S.
Petit-Watelot
,
Y.
Quessab
,
M.
Hehn
,
F.
Montaigne
,
G.
Malinowski
, and
S.
Mangin
, “
Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses
,”
Phys. Rev. B
94
,
064412
(
2016
).
8.
R.
Medapalli
,
D.
Afanasiev
,
D. K.
Kim
,
Y.
Quessab
,
S.
Manna
,
S. A.
Montoya
,
A.
Kirilyuk
,
T.
Rasing
,
A. V.
Kimel
, and
E. E.
Fullerton
, “
Multiscale dynamics of helicity-dependent all-optical magnetization reversal in ferromagnetic Co/Pt multilayers
,”
Phys. Rev. B
96
,
224421
(
2017
).
9.
A.
Stupakiewicz
,
K.
Szerenos
,
D.
Afanasiev
,
A.
Kirilyuk
, and
A. V.
Kimel
, “
Ultrafast nonthermal photo-magnetic recording in a transparent medium
,”
Nature
542
,
71
74
(
2017
).
10.
C. S.
Davies
,
K. H.
Prabhakara
,
M. D.
Davydova
,
K. A.
Zvezdin
,
T. B.
Shapaeva
,
S.
Wang
,
A. K.
Zvezdin
,
A.
Kirilyuk
,
T.
Rasing
, and
A. V.
Kimel
, “
Anomalously damped heat-assisted route for precessional magnetization reversal in an iron garnet
,”
Phys. Rev. Lett.
122
,
027202
(
2019
).
11.
A.
Stupakiewicz
,
C. S.
Davies
,
K.
Szerenos
,
D.
Afanasiev
,
K. S.
Rabinovich
,
A. V.
Boris
,
A.
Caviglia
,
A. V.
Kimel
, and
A.
Kirilyuk
, “
Ultrafast phononic switching of magnetization
,”
Nat. Phys.
17
,
489
492
(
2021
).
12.
A.
Kimel
,
A.
Kirilyuk
,
A.
Tsvetkov
,
R.
Pisarev
, and
T.
Rasing
, “
Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3
,”
Nature
429
,
850
853
(
2004
).
13.
A.
Kimel
,
B.
Ivanov
,
R.
Pisarev
,
P.
Usachev
,
A.
Kirilyuk
, and
T.
Rasing
, “
Inertia-driven spin switching in antiferromagnets
,”
Nat. Phys.
5
,
727
731
(
2009
).
14.
W.
Zhang
,
M. B.
Jungfleisch
,
W.
Jiang
,
J. E.
Pearson
,
A.
Hoffmann
,
F.
Freimuth
, and
Y.
Mokrousov
, “
Spin hall effects in metallic antiferromagnets
,”
Phys. Rev. Lett.
113
,
196602
(
2014
).
15.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nanotechnol.
11
,
231
241
(
2016
).
16.
C.
Kittel
, “
Theory of antiferromagnetic resonance
,”
Phys. Rev.
82
,
565
565
(
1951
).
17.
T.
Kampfrath
,
A.
Sell
,
G.
Klatt
,
A.
Pashkin
,
S.
Mährlein
,
T.
Dekorsy
,
M.
Wolf
,
M.
Fiebig
,
A.
Leitenstorfer
, and
R.
Huber
, “
Coherent terahertz control of antiferromagnetic spin waves
,”
Nat. Photonics
5
,
31
34
(
2011
).
18.
S.
Wienholdt
,
D.
Hinzke
, and
U.
Nowak
, “
THz switching of antiferromagnets and ferrimagnets
,”
Phys. Rev. Lett.
108
,
247207
(
2012
).
19.
S.
Schlauderer
,
C.
Lange
,
S.
Baierl
,
T.
Ebnet
,
C. P.
Schmid
,
D. C.
Valovcin
,
A. K.
Zvezdin
,
A. V.
Kimel
,
R. V.
Mikhaylovskiy
, and
R.
Huber
, “
Temporal and spectral fingerprints of ultrafast all-coherent spin switching
,”
Nature
569
,
383
387
(
2019
).
20.
T.
Dannegger
,
M.
Berritta
,
K.
Carva
,
S.
Selzer
,
U.
Ritzmann
,
P. M.
Oppeneer
, and
U.
Nowak
, “
Ultrafast coherent all-optical switching of an antiferromagnet with the inverse faraday effect
,”
Phys. Rev. B
104
,
L060413
(
2021
).
21.
R.
Cheng
,
M. W.
Daniels
,
J.-G.
Zhu
, and
D.
Xiao
, “
Ultrafast switching of antiferromagnets via spin-transfer torque
,”
Phys. Rev. B
91
,
064423
(
2015
).
22.
T.
Moriyama
,
K.
Oda
, and
T.
Ono
, “
Spin torque control of antiferromagnetic moments in NiO
,”
Sci. Rep.
8
,
14167
(
2018
).
23.
T.
Chirac
,
J.-Y.
Chauleau
,
P.
Thibaudeau
,
O.
Gomonay
, and
M.
Viret
, “
Ultrafast antiferromagnetic switching in NiO induced by spin transfer torques
,”
Phys. Rev. B
102
,
134415
(
2020
).
24.
P.
Wadley
,
B.
Howells
,
J.
Železný
,
C.
Andrews
,
V.
Hills
,
R. P.
Campion
,
V.
Novák
,
K.
Olejník
,
F.
Maccherozzi
,
S. S.
Dhesi
 et al, “
Electrical switching of an antiferromagnet
,”
Science
351
,
587
590
(
2016
).
25.
K.
Olejnik
,
T.
Seifert
,
Z.
Kaspar
,
V.
Novak
,
P.
Wadley
,
R.
Campion
,
M.
Baumgartner
,
P.
Gambardella
,
P.
Němec
,
J.
Wunderlich
,
J.
Sinova
,
M.
Muller
,
T.
Kampfrath
, and
T.
Jungwirth
, “
Thz electrical writing speed in an antiferromagnetic memory
,”
Sci. Adv.
4
,
eaar3566
(
2018
).
26.
J.
Zhao
,
A. V.
Bragas
,
D. J.
Lockwood
, and
R.
Merlin
, “
Magnon squeezing in an antiferromagnet: Reducing the spin noise below the standard quantum limit
,”
Phys. Rev. Lett.
93
,
107203
(
2004
).
27.
D.
Bossini
,
S.
Dal Conte
,
Y.
Hashimoto
 et al, “
Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons
,”
Nat. Commun.
7
,
10645
(
2016
).
28.
D.
Bossini
,
S.
Dal Conte
,
G.
Cerullo
,
O.
Gomonay
,
R. V.
Pisarev
,
M.
Borovsak
,
D.
Mihailovic
,
J.
Sinova
,
J. H.
Mentink
,
T.
Rasing
, and
A. V.
Kimel
, “
Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets
,”
Phys. Rev. B
100
,
024428
(
2019
).
29.
G.
Fabiani
,
M. D.
Bouman
, and
J. H.
Mentink
, “
Supermagnonic propagation in two-dimensional antiferromagnets
,”
Phys. Rev. Lett.
127
,
097202
(
2021
).
30.
G.
Fabiani
and
J. H.
Mentink
, “
Exceptionally fast dynamics of entanglement in heisenberg antiferromagnets
,” arXiv:1912.10845 (
2021
).
31.
E.
Goto
, “
The parametron, a digital computing element which utilizes parametric oscillation
,”
Proc. IRE
47
,
1304
1316
(
1959
).
32.
J. H.
Mentink
,
K.
Balzer
, and
M.
Eckstein
, “
Ultrafast and reversible control of the exchange interaction in Mott insulators
,”
Nat. Commun.
6
,
6708
(
2015
).
33.
J. H.
Mentink
, “
Manipulating magnetism by ultrafast control of the exchange interaction
,”
J. Phys.: Condens. Matter
29
,
453001
(
2017
).
34.
M.
Eckstein
,
J. H.
Mentink
, and
P.
Werner
, “
Designing spin and orbital exchange Hamiltonians with ultrashort electric field transients
,” arXiv:1703.03269 (
2017
).
35.
T.
Kloss
,
A.
Kreisel
, and
P.
Kopietz
, “
Parametric pumping and kinetics of magnons in dipolar ferromagnets
,”
Phys. Rev. B
81
,
104308
(
2010
).
36.
C. C.
Gerry
and
S.
Silverman
, “
Path integral for coherent states of the dynamical group SU(1,1)
,”
J. Math. Phys.
23
,
1995
2003
(
1982
).
37.
C. C.
Gerry
, “
Dynamics of SU(1,1) coherent states
,”
Phys. Rev. A
31
,
2721
2723
(
1985
).
38.
A. M.
Perelomov
, “
Coherent states and symmetric spaces
,”
Commun. Math. Phys.
44
,
197
210
(
1975
).
39.
P. W.
Anderson
, “
Random-phase approximation in the theory of superconductivity
,”
Phys. Rev.
112
,
1900
1916
(
1958
).
40.
A. K.
Zvezdin
, “
Dynamics of domain walls in weak ferromagnets
,”
Sov. J. Exp. Theor. Phys. Lett.
29
,
553
(
1979
).
41.
T.
Gilbert
, “
A phenomenological theory of damping in ferromagnetic materials
,”
IEEE Trans. Magn.
40
,
3443
3449
(
2004
).
42.
In the rotating frame approximations (i) and (ii), the equations of motion read: θ̇k=Vksin(ϕkω0t)ηsinh(θk)ϕ̇k and ϕ̇k=2ωk+Vkcos(ϕkω0t)cothθk+ηsinhθkθ̇k.
43.
R.
Coldea
,
S. M.
Hayden
,
G.
Aeppli
,
T. G.
Perring
,
C. D.
Frost
,
T. E.
Mason
,
S.-W.
Cheong
, and
Z.
Fisk
, “
Spin waves and electronic interactions in La2CuO4
,”
Phys. Rev. Lett.
86
,
5377
5380
(
2001
).
44.
K.
Kim
,
S.
Lim
,
J.-U.
Lee
,
S.
Lee
,
T.
Kim
,
K.
Park
,
G.
Jeon
,
C.-H.
Park
,
J.-G.
Park
, and
H.
Cheong
, “
Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3
,”
Nat. Commun.
10
,
345
(
2019
).
45.
E.
Golias
,
I.
Kumberg
,
I.
Gelen
,
S.
Thakur
,
J.
Gördes
,
R.
Hosseinifar
,
Q.
Guillet
,
J. K.
Dewhurst
,
S.
Sharma
,
C.
Schüßler-Langeheine
,
N.
Pontius
, and
W.
Kuch
, “
Ultrafast optically induced ferromagnetic state in an elemental antiferromagnet
,”
Phys. Rev. Lett.
126
,
107202
(
2021
).
46.
S.
Ghosh
,
F.
Freimuth
,
O.
Gomonay
,
S.
Blügel
, and
Y.
Mokrousov
, “
Driving spin chirality by electron dynamics in laser-excited antiferromagnets
,” arXiv:2011.01670 (
2022
).
47.
C.
Banerjee
,
N.
Teichert
,
K.
Siewierska
,
Z.
Gercsi
,
G.
Atcheson
,
P.
Stamenov
,
K.
Rode
,
J. M. D.
Coey
, and
J.
Besbas
, “
Single pulse all-optical toggle switching of magnetization without gadolinium in the ferrimagnet Mn2RuxGa
,”
Nat. Commun.
11
,
4444
(
2020
).
48.
C.
Banerjee
,
K.
Rode
,
G.
Atcheson
,
S.
Lenne
,
P.
Stamenov
,
J. M. D.
Coey
, and
J.
Besbas
, “
Ultrafast double pulse all-optical reswitching of a ferrimagnet
,”
Phys. Rev. Lett.
126
,
177202
(
2021
).
49.
R.
Gaudenzi
,
E.
Burzurì
,
S.
Maegawa
 et al, “
Quantum Landauer erasure with a molecular nanomagnet
,”
Nat. Phys.
14
,
565
568
(
2018
).
50.
R.
Landauer
, “
Irreversibility and heat generation in the computing process
,”
IBM J. Res. Develop.
5
,
183
191
(
1961
).
51.
A.
Bérut
,
A.
Arakelyan
,
A.
Petrosyan
,
S.
Ciliberto
,
R.
Dillenschneider
, and
E.
Lutz
, “
Experimental verification of Landauer's principle linking information and thermodynamics
,”
Nature
483
,
187
189
(
2012
).
52.
Y.
Jun
,
M.
Gavrilov
, and
J.
Bechhoefer
, “
High-precision test of Landauer's principle in a feedback trap
,”
Phys. Rev. Lett.
113
,
190601
(
2014
).
53.
M.
Madami
,
M.
d'Aquino
,
G.
Gubbiotti
,
S.
Tacchi
,
C.
Serpico
, and
G.
Carlotti
, “
Micromagnetic study of minimum-energy dissipation during Landauer erasure of either isolated or coupled nanomagnetic switches
,”
Phys. Rev. B
90
,
104405
(
2014
).
54.
J.
Hong
,
B.
Lambson
,
S.
Dhuey
, and
J.
Bokor
, “
Experimental test of Landauer's principle in single-bit operations on nanomagnetic memory bits
,”
Sci. Adv.
2
,
e1501492
(
2016
).
55.
S.
Deffner
and
S.
Campbell
, “
Quantum speed limits: From Heisenberg's uncertainty principle to optimal quantum control
,”
J. Phys. A
50
,
453001
(
2017
).
56.
Q.
Liu
,
H. Y.
Yuan
,
K.
Xia
, and
Z.
Yuan
, “
Mode-dependent damping in metallic antiferromagnets due to intersublattice spin pumping
,”
Phys. Rev. Mater.
1
,
061401
(
2017
).
57.
F.
Mahfouzi
and
N.
Kioussis
, “
Damping and antidamping phenomena in metallic antiferromagnets: An ab initio study
,”
Phys. Rev. B
98
,
220410
(
2018
).
58.
H. T.
Simensen
,
A.
Kamra
,
R. E.
Troncoso
, and
A.
Brataas
, “
Magnon decay theory of gilbert damping in metallic antiferromagnets
,”
Phys. Rev. B
101
,
020403
(
2020
).
59.
J. P.
Kotthaus
and
V.
Jaccarino
, “
Antiferromagnetic-resonance linewidths in MnF2
,”
Phys. Rev. Lett.
28
,
1649
1652
(
1972
).
60.
D. J.
Lockwood
and
M. G.
Cottam
, “
Light scattering from magnons in MnF2
,”
Phys. Rev. B
35
,
1973
1982
(
1987
).
61.
S. P.
Bayrakci
,
T.
Keller
,
K.
Habicht
, and
B.
Keimer
, “
Spin-wave lifetimes throughout the Brillouin zone
,”
Science
312
,
1926
1929
(
2006
).
62.
S. P.
Bayrakci
,
D. A.
Tennant
,
P.
Leininger
,
T.
Keller
,
M. C. R.
Gibson
,
S. D.
Wilson
,
R. J.
Birgeneau
, and
B.
Keimer
, “
Lifetimes of antiferromagnetic magnons in two and three dimensions: Experiment, theory, and numerics
,”
Phys. Rev. Lett.
111
,
017204
(
2013
).
You do not currently have access to this content.