Nanoblisters have received substantial attention owing to their ability to controllably modulate physical properties of two-dimensional (2D) layered materials. Herein, we demonstrated that nanoblisters formed by molybdenum disulfide (MoS2) can produce in-plane strains via out-of-plane deformation. The in-plane strains can effectively modulate frictional behaviors of MoS2. Friction force microscopy results showed that the friction was significantly increased at the edge of MoS2 nanoblisters due to the “step edge effect.” In addition, the friction measured in the central area of the MoS2 nanoblisters was found increased as the height to radius aspect ratios of MoS2 nanoblisters increased. Our atomically resolved friction images revealed that the dynamic friction tuned via nanoblisters was originated from the changes in the movement state of the tip caused by the in-plane strains. This study clarified the feasibility of nanoblisters as a simple strain engineering strategy to modulate the friction properties of 2D materials.

1.
R. J.
Cannara
,
M. J.
Brukman
,
K.
Cimatu
,
A. V.
Sumant
,
S.
Baldelli
, and
R. W.
Carpick
,
Science
318
(
5851
),
780
783
(
2007
).
2.
J.
Chen
,
I.
Ratera
,
J. Y.
Park
, and
M.
Salmeron
,
Phys. Rev. Lett.
96
(
23
),
236102
(
2006
).
3.
J. Y.
Park
,
D. F.
Ogletree
,
M.
Salmeron
,
R. A.
Ribeiro
,
P. C.
Canfield
,
C. J.
Jenks
, and
P. A.
Thiel
,
Science
309
(
5739
),
1354
1356
(
2005
).
4.
R.
Maboudian
and
C.
Carraro
,
Annu. Rev. Phys. Chem.
55
(
1
),
35
54
(
2004
).
5.
J. A.
Williams
and
H. R.
Le
,
J. Phys. D
39
(
12
),
R201
R214
(
2006
).
6.
D.
Berman
,
A.
Erdemir
, and
A. V.
Sumant
,
Mater. Today
17
(
1
),
31
42
(
2014
).
7.
S.
Zhang
,
T.
Ma
,
A.
Erdemir
, and
Q.
Li
,
Mater. Today
26
,
67
86
(
2019
).
8.
D.
Berman
,
A.
Erdemir
, and
A. V.
Sumant
,
ACS Nano
12
(
3
),
2122
2137
(
2018
).
9.
O.
Hod
,
E.
Meyer
,
Q.
Zheng
, and
M.
Urbakh
,
Nature
563
(
7732
),
485
492
(
2018
).
10.
O.
Acikgoz
and
M. Z.
Baykara
,
Appl. Phys. Lett.
116
(
7
),
071603
(
2020
).
11.
P.
Gong
and
P.
Egberts
,
Appl. Phys. Lett.
119
(
6
),
063102
(
2021
).
12.
S.
Zhao
,
M.
Niu
,
P.
Peng
,
Y.
Cheng
, and
Y.
Zhao
,
Eng. Sci.
9
,
77
83
(
2020
).
13.
R.
Bennewitz
,
Mater. Today
8
(
5
),
42
48
(
2005
).
14.
C.
Lee
,
Q.
Li
,
W.
Kalb
,
X.-Z.
Liu
,
H.
Berger
,
W.
Carpick Robert
, and
J.
Hone
,
Science
328
(
5974
),
76
80
(
2010
).
15.
S.
Choi Jin
,
J.-S.
Kim
,
I.-S.
Byun
,
H.
Lee Duk
,
J.
Lee Mi
,
H.
Park Bae
,
C.
Lee
,
D.
Yoon
,
H.
Cheong
,
H.
Lee Ki
,
Y.-W.
Son
,
Y.
Park Jeong
, and
M.
Salmeron
,
Science
333
(
6042
),
607
610
(
2011
).
16.
P.
Gallagher
,
M.
Lee
,
F.
Amet
,
P.
Maksymovych
,
J.
Wang
,
S.
Wang
,
X.
Lu
,
G.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
, and
D.
Goldhaber-Gordon
,
Nat. Commun.
7
(
1
),
10745
(
2016
).
17.
D.
Zhang
,
Y.
Zhang
,
Q.
Li
, and
M.
Dong
,
Friction
10
,
578
(
2021
).
18.
P.
Egberts
,
G. H.
Han
,
X. Z.
Liu
,
A. T. C.
Johnson
, and
R. W.
Carpick
,
ACS Nano
8
(
5
),
5010
5021
(
2014
).
19.
Z.
Ye
,
P.
Egberts
,
G. H.
Han
,
A. T. C.
Johnson
,
R. W.
Carpick
, and
A.
Martini
,
ACS Nano
10
(
5
),
5161
5168
(
2016
).
20.
Y.
Zhang
,
D.
Zhang
,
Y.
Wang
,
Q.
Liu
,
Q.
Li
, and
M.
Dong
,
ACS Appl. Nano Mater.
4
(
9
),
9932
9937
(
2021
).
21.
K.
Xu
,
Y.
Pan
,
S.
Ye
,
L.
Lei
,
S.
Hussain
,
Q.
Wang
,
Z.
Yang
,
X.
Liu
,
W.
Ji
,
R.
Xu
, and
Z.
Cheng
,
Appl. Phys. Lett.
115
(
6
),
063101
(
2019
).
22.
S.
Li
,
Q.
Li
,
R. W.
Carpick
,
P.
Gumbsch
,
X. Z.
Liu
,
X.
Ding
,
J.
Sun
, and
J.
Li
,
Nature
539
(
7630
),
541
545
(
2016
).
23.
F.
Long
,
P.
Yasaei
,
W.
Yao
,
A.
Salehi-Khojin
, and
R.
Shahbazian-Yassar
,
ACS Appl. Mater. Interfaces
9
(
24
),
20922
20927
(
2017
).
24.
S.
Zhang
,
Y.
Hou
,
S.
Li
,
L.
Liu
,
Z.
Zhang
,
X.-Q.
Feng
, and
Q.
Li
,
Proc. Natl. Acad. Sci. U. S. A.
116
(
49
),
24452
(
2019
).
25.
C.
Androulidakis
,
E. N.
Koukaras
,
G.
Paterakis
,
G.
Trakakis
, and
C.
Galiotis
,
Nat. Commun.
11
(
1
),
1595
(
2020
).
26.
Z.
Dai
,
Y.
Hou
,
D. A.
Sanchez
,
G.
Wang
,
C. J.
Brennan
,
Z.
Zhang
,
L.
Liu
, and
N.
Lu
,
Phys. Rev. Lett.
121
(
26
),
266101
(
2018
).
27.
D. A.
Sanchez
,
Z.
Dai
,
P.
Wang
,
A.
Cantu-Chavez
,
C. J.
Brennan
,
R.
Huang
, and
N.
Lu
,
Proc. Natl. Acad. Sci. U. S. A.
115
(
31
),
7884
(
2018
).
28.
B. H.
Tan
,
J.
Zhang
,
J.
Jin
,
C. H.
Ooi
,
Y.
He
,
R.
Zhou
,
K.
Ostrikov
,
N. T.
Nguyen
, and
H.
An
,
Nano Lett.
20
(
5
),
3478
3484
(
2020
).
29.
N.
Mullin
and
J. K.
Hobbs
,
Rev. Sci. Instrum.
85
(
11
),
113703
(
2014
).
30.
L. W.
Drahushuk
,
L.
Wang
,
S. P.
Koenig
,
J. S.
Bunch
, and
M. S.
Strano
,
ACS Nano
10
(
1
),
786
795
(
2016
).
31.
G.
Wang
,
Z.
Dai
,
Y.
Wang
,
P.
Tan
,
L.
Liu
,
Z.
Xu
,
Y.
Wei
,
R.
Huang
, and
Z.
Zhang
,
Phys. Rev. Lett.
119
(
3
),
036101
(
2017
).
32.
N. G.
Boddeti
,
X.
Liu
,
R.
Long
,
J.
Xiao
,
J. S.
Bunch
, and
M. L.
Dunn
,
Nano Lett.
13
(
12
),
6216
6221
(
2013
).
33.
Y.
Hong
,
S.
Wang
,
Q.
Li
,
X.
Song
,
Z.
Wang
,
X.
Zhang
,
F.
Besenbacher
, and
M.
Dong
,
Nanoscale
11
(
41
),
19334
19340
(
2019
).
34.
J.
Song
,
Q.
Li
,
X.
Wang
,
J.
Li
,
S.
Zhang
,
J.
Kjems
,
F.
Besenbacher
, and
M.
Dong
,
Nat. Commun.
5
,
4837
(
2014
).
35.
M. R.
Vazirisereshk
,
H.
Ye
,
Z.
Ye
,
A.
Otero-de-la-Roza
,
M.-Q.
Zhao
,
Z.
Gao
,
A. T. C.
Johnson
,
E. R.
Johnson
,
R. W.
Carpick
, and
A.
Martini
,
Nano Lett.
19
(
8
),
5496
5505
(
2019
).
36.
Z.
Chen
,
A.
Khajeh
,
A.
Martini
, and
H.
Kim Seong
,
Sci. Adv.
5
(
8
),
eaaw0513
(
2019
).
37.
A.
Socoliuc
,
R.
Bennewitz
,
E.
Gnecco
, and
E.
Meyer
,
Phys. Rev. Lett.
92
(
13
),
134301
(
2004
).

Supplementary Material

You do not currently have access to this content.