Nonlinear harmonic generation in nanostructures is one of the key topics in nanophotonics, as it allows infrared-to-visible light conversion at the nanoscale. Indeed, various nanophotonic designs have been developed to demonstrate high efficiencies for third harmonic generation (THG). However, fabrication approaches for these designs usually involve high-cost lithography-based technological steps. This work reports on the efficient THG in a free-standing Si nanowire array encapsulated into a flexible polymer membrane. High nonlinearity of Si material χ1111(3)2.62×1019m2/V2 and light coupling with optical resonances in the nanowires yield a strong third-harmonic signal and efficient infrared (12002000 nm) to visible (400666 nm) upconversion. The fabricated membranes demonstrate high flexibility and transparency, which make them convenient to use as infrared light visualizers.

1.
G.
Li
,
S.
Zhang
, and
T.
Zentgraf
, “
Nonlinear photonic metasurfaces
,”
Nat. Rev. Mater.
2
,
1
14
(
2017
).
2.
S.
Keren-Zur
,
O.
Avayu
,
L.
Michaeli
, and
T.
Ellenbogen
, “
Nonlinear beam shaping with plasmonic metasurfaces
,”
ACS Photonics
3
,
117
123
(
2016
).
3.
C.
Schlickriede
,
S. S.
Kruk
,
L.
Wang
,
B.
Sain
,
Y.
Kivshar
, and
T.
Zentgraf
, “
Nonlinear imaging with all-dielectric metasurfaces
,”
Nano Lett.
20
,
4370
4376
(
2020
).
4.
S.
Zhang
,
L.
Liu
,
S.
Ren
,
Z.
Li
,
Y.
Zhao
,
Z.
Yang
,
R.
Hu
,
J.
Qu
 et al., “
Recent advances in nonlinear optics for bio-imaging applications
,”
Opto-Electron. Adv.
3
,
200003
(
2020
).
5.
L.
Huang
,
S.
Zhang
, and
T.
Zentgraf
, “
Metasurface holography: From fundamentals to applications
,”
Nanophotonics
7
,
1169
1190
(
2018
).
6.
S.
Makarov
,
A.
Tsypkin
,
T.
Voytova
,
V.
Milichko
,
I.
Mukhin
,
A.
Yulin
,
S.
Putilin
,
M.
Baranov
,
A.
Krasnok
,
I.
Morozov
 et al., “
Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation
,”
Nanoscale
8
,
17809
17814
(
2016
).
7.
M.
Rahmani
,
G.
Leo
,
I.
Brener
,
A. V.
Zayats
,
S. A.
Maier
,
C.
De Angelis
,
H.
Tan
,
V. F.
Gili
,
F.
Karouta
,
R.
Oulton
 et al., “
Nonlinear frequency conversion in optical nanoantennas and metasurfaces: Materials evolution and fabrication
,”
Opto-Electron. Adv.
1
,
18002101
(
2018
).
8.
J.
Gao
,
M. A.
Vincenti
,
J.
Frantz
,
A.
Clabeau
,
X.
Qiao
,
L.
Feng
,
M.
Scalora
, and
N. M.
Litchinitser
, “
Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces
,”
Nat. Commun.
12
,
5833
(
2021
).
9.
T.
Pertsch
and
Y.
Kivshar
, “
Nonlinear optics with resonant metasurfaces
,”
MRS Bull.
45
,
210
220
(
2020
).
10.
V. V.
Fedorov
,
A.
Bolshakov
,
O.
Sergaeva
,
V.
Neplokh
,
D.
Markina
,
S.
Bruyere
,
G.
Saerens
,
M. I.
Petrov
,
R.
Grange
,
M.
Timofeeva
 et al., “
Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion
,”
ACS Nano
14
,
10624
10632
(
2020
).
11.
M. R.
Shcherbakov
,
D. N.
Neshev
,
B.
Hopkins
,
A. S.
Shorokhov
,
I.
Staude
,
E. V.
Melik-Gaykazyan
,
M.
Decker
,
A. A.
Ezhov
,
A. E.
Miroshnichenko
,
I.
Brener
 et al., “
Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response
,”
Nano Lett.
14
,
6488
6492
(
2014
).
12.
S. V.
Makarov
,
M. I.
Petrov
,
U.
Zywietz
,
V.
Milichko
,
D.
Zuev
,
N.
Lopanitsyna
,
A.
Kuksin
,
I.
Mukhin
,
G.
Zograf
,
E.
Ubyivovk
 et al., “
Efficient second-harmonic generation in nanocrystalline silicon nanoparticles
,”
Nano Lett.
17
,
3047
3053
(
2017
).
13.
S.
Makarov
,
I. S.
Sinev
,
V. A.
Milichko
,
F.
Komissarenko
,
D.
Zuev
,
E. V.
Ushakova
,
I.
Mukhin
,
Y. F.
Yu
,
A. I.
Kuznetsov
,
P.
Belov
 et al., “
Nanoscale generation of white light for ultrabroadband nanospectroscopy
,”
Nano Lett.
18
,
535
539
(
2018
).
14.
V.
Schmidt
,
J. V.
Wittemann
,
S.
Senz
, and
U.
Gösele
, “
Silicon nanowires: A review on aspects of their growth and their electrical properties
,”
Adv. Mater.
21
,
2681
2702
(
2009
).
15.
K.-Q.
Peng
and
S.-T.
Lee
, “
Silicon nanowires for photovoltaic solar energy conversion
,”
Adv. Mater.
23
,
198
215
(
2011
).
16.
Y.
Huang
,
X.
Duan
, and
C. M.
Lieber
, “
Nanowires for integrated multicolor nanophotonics
,”
Small
1
,
142
147
(
2004
).
17.
S.
Kim
and
J. F.
Cahoon
, “
Geometric nanophotonics: Light management in single nanowires through morphology
,”
Acc. Chem. Res.
52
,
3511
3520
(
2019
).
18.
I.
Morozov
,
A.
Gudovskikh
,
A.
Uvarov
,
A.
Baranov
,
V.
Sivakov
, and
D.
Kudryashov
, “
The study of latex sphere lithography for high aspect ratio dry silicon etching
,”
Phys. Status Solidi A
217
,
1900535
(
2020
).
19.
E.
Vyacheslavova
,
I.
Morozov
,
D.
Kudryashov
, and
A.
Gudovskikh
, “
Formation of SiO2 hard mask using dry etching and nanosphere lithography
,”
J. Phys.: Conf. Ser.
1697
,
012188
(
2020
).
20.
G. P.
Zograf
,
M. I.
Petrov
,
S. V.
Makarov
, and
Y. S.
Kivshar
, “
All-dielectric thermonanophotonics
,”
Adv. Opt. Photonics
13
,
643
702
(
2021
).
21.
C.
Zhang
,
Y.
Xu
,
J.
Liu
,
J.
Li
,
J.
Xiang
,
H.
Li
,
J.
Li
,
Q.
Dai
,
S.
Lan
, and
A. E.
Miroshnichenko
, “
Lighting up silicon nanoparticles with Mie resonances
,”
Nat. Commun.
9
(
1
),
2964
(
2018
).
22.
A.
Larin
,
A.
Nominé
,
E.
Ageev
,
J.
Ghanbaja
,
L.
Kolotova
,
S.
Starikov
,
S.
Bruyère
,
T.
Belmonte
,
S.
Makarov
, and
D.
Zuev
, “
Plasmonic nanosponges filled with silicon for enhanced white light emission
,”
Nanoscale
12
,
1013
1021
(
2020
).
23.
N. K.
Hon
,
R.
Soref
, and
B.
Jalali
, “
The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared
,”
J. Appl. Phys.
110
,
011301
(
2011
).
24.
M. A.
Green
, “
Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients
,”
Sol. Energy Mater. Sol. Cells
92
,
1305
1310
(
2008
).
25.
L.
Carletti
,
A.
Locatelli
,
O.
Stepanenko
,
G.
Leo
, and
C.
De Angelis
, “
Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas
,”
Opt. Express
23
,
26544
26550
(
2015
).
26.
P.
Ginzburg
,
A. V.
Krasavin
,
G. A.
Wurtz
, and
A. V.
Zayats
, “
Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures
,”
ACS Photonics
2
,
8
13
(
2015
).

Supplementary Material

You do not currently have access to this content.