Alkali metal dispensers have become an indispensable tool in the production of atomic vapors for magnetometry, alkali vapor cell clocks, and laser cooling experiments. A primary advantage of these dispensers is that they contain alkali metal in an inert form that can be exposed to air without hazard. However, their high temperature of operation (>600 °C) is undesirable for many applications, as it shifts the atomic speed distribution to higher values and presents a radiative heat source that can raise the temperature of its surroundings. For this reason, dispensers are typically not used in line-of-sight applications, such as atomic beam generation. In this work, we present an integrated rubidium dispenser collimating device with a thickness of only 2 mm that produces a beam of atoms traveling primarily in the forward direction. We find that the collimator plate serves to both shield the dispenser's radiation and moderate the velocity of the atomic beam so that the measured longitudinal speed distribution is comparable to that of an ordinary alkali oven at only a slightly elevated temperature of 200 °C. To confirm our theory, we also constructed another compact apparatus consisting of a dispenser and a silicon collimator and the measurements support our conclusion. Our integrated dispenser collimator will particularly be useful in integrated photonics and cavity QED on-chip, where a localized, directed source of Rb vapor in small quantities is needed.

1.
M.
Keil
,
O.
Amit
,
S.
Zhou
,
D.
Groswasser
,
Y.
Japha
, and
R.
Folman
, “
Fifteen years of cold matter on the atom chip: Promise, realizations, and prospects
,”
J. Mod. Opt.
63
,
1840
1885
(
2016
).
2.
J.
Kitching
, “
Chip-scale atomic devices
,”
Appl. Phys. Rev.
5
,
031302
(
2018
).
3.
V.
Maurice
,
J.
Rutkowski
,
E.
Kroemer
,
S.
Bargiel
,
N.
Passilly
,
R.
Boudot
,
C.
Gorecki
,
L.
Mauri
, and
M.
Moraja
, “
Microfabricated vapor cells filled with a cesium dispensing paste for miniature atomic clocks
,”
Appl. Phys. Lett.
110
,
164103
(
2017
).
4.
W. C.
Griffith
,
S.
Knappe
, and
J.
Kitching
, “
Femtotesla atomic magnetometry in a microfabricated vapor cell
,”
Opt. Express
18
,
27167
27172
(
2010
).
5.
Y.
Sebbag
,
E.
Talker
,
A.
Naiman
,
Y.
Barash
, and
U.
Levy
, “
Demonstration of an integrated nanophotonic chip-scale alkali vapor magnetometer using inverse design
,”
Light: Sci. Appl.
10
,
54
(
2021
).
6.
D.
Sheng
,
A. R.
Perry
,
S. P.
Krzyzewski
,
S.
Geller
,
J.
Kitching
, and
S.
Knappe
, “
A microfabricated optically-pumped magnetic gradiometer
,”
Appl. Phys. Lett.
110
,
031106
(
2017
).
7.
S.
Abend
,
M.
Gebbe
,
M.
Gersemann
,
H.
Ahlers
,
H.
Muentinga
,
E.
Giese
,
N.
Gaaloul
,
C.
Schubert
,
C.
Laemmerzahl
,
W.
Ertmer
 et al., “
Atom-chip fountain gravimeter
,”
Phys. Rev. Lett.
117
,
203003
(
2016
).
8.
Y.
Colombe
,
T.
Steinmetz
,
G.
Dubois
,
F.
Linke
,
D.
Hunger
, and
J.
Reichel
, “
Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip
,”
Nature
450
,
272
276
(
2007
).
9.
T.
Berrada
,
S.
van Frank
,
R.
Bücker
,
T.
Schumm
,
J.-F.
Schaff
, and
J.
Schmiedmayer
, “
Integrated Mach–Zehnder interferometer for Bose–Einstein condensates
,”
Nat. Commun.
4
(
1
),
2077
(
2013
).
10.
P.
Treutlein
,
D.
Hunger
,
S.
Camerer
,
T. W.
Hänsch
, and
J.
Reichel
, “
Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip
,”
Phys. Rev. Lett.
99
,
140403
(
2007
).
11.
G.-B.
Jo
,
Y.
Shin
,
S.
Will
,
T.
Pasquini
,
M.
Saba
,
W.
Ketterle
,
D. E.
Pritchard
,
M.
Vengalattore
, and
M.
Prentiss
, “
Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip
,”
Phys. Rev. Lett.
98
,
030407
(
2007
).
12.
SAES Getters USA Inc.
(
SAES Getters
,
Springs, CO
).
13.
T. M.
Roach
and
D.
Henclewood
, “
Novel rubidium atomic beam with an alkali dispenser source
,”
J. Vac. Sci. Technol. A
22
,
2384
2387
(
2004
).
14.
A. E.
Dorche
,
B.
Wei
,
C.
Raman
, and
A.
Adibi
, “
High-quality-factor microring resonator for strong atom–light interactions using miniature atomic beams
,”
Opt. Lett.
45
,
5958
5961
(
2020
).
15.
H.
Alaeian
,
R.
Ritter
,
M.
Basic
,
R.
Löw
, and
T.
Pfau
, “
Cavity QED based on room temperature atoms interacting with a photonic crystal cavity: A feasibility study
,”
Appl. Phys. B
126
,
25
(
2020
).
16.
C.
Li
,
B.
Wei
,
X.
Chai
,
J.
Yang
,
A.
Daruwalla
,
F.
Ayazi
,
C.
Raman
 et al., “
Robust characterization of microfabricated atomic beams on a six-month time scale
,”
Phys. Rev. Res.
2
,
023239
(
2020
).
17.
P.
Molenaar
,
P.
Van der Straten
,
H.
Heideman
, and
H.
Metcalf
, “
Diagnostic technique for zeeman-compensated atomic beam slowing: Technique and results
,”
Phys. Rev. A
55
,
605
(
1997
).
18.
N.
Ramsey
,
Molecular Beams
(
Oxford University Press
,
1985
).
19.
C.
Li
,
X.
Chai
,
B.
Wei
,
J.
Yang
,
A.
Daruwalla
,
F.
Ayazi
, and
C.
Raman
, “
Cascaded collimator for atomic beams traveling in planar silicon devices
,”
Nat. Commun.
10
,
1831
(
2019
).
20.
H.
Beijerinck
and
N.
Verster
, “
Velocity distribution and angular distribution of molecular beams from multichannel arrays
,”
J. Appl. Phys.
46
,
2083
2091
(
1975
).
You do not currently have access to this content.