Quantum dots (QDs)-based composites are promising candidates for optoelectronic and photonic devices. Understanding the photo-induced carrier dynamics is fundamental and crucial for improving the photoelectric conversion efficiency of nanocomposites. In this work, we have constructed nanocomposite hybridizing CdTe QDs with Au nanoclusters (Au NCs) and investigated the ultrafast carrier dynamics and enhanced photoelectric properties. The concurrent photoluminescence quenching and lifetime decreasing of CdTe QDs and Au NCs suggest a type-II band alignment, facilitating the carrier dynamics in the CdTe QDs-Au NCs' nanocomposite. The transient absorption measurements demonstrate an ultrafast and efficient electron transfer from CdTe QDs to Au NCs, effectively promoting the charge separation and inhibiting the exciton recombination. We found that the quantum efficiency of hot electron transfer can reach ∼50% with a rate constant of 1.01 × 1013 s−1 for the CdTe QDs-Au NCs' nanocomposite. As a result, the photocurrent performance of the CdTe QDs-Au NC device has been dramatically enhanced due to the efficient separation of photogenerated carriers, compared to that of individual CdTe QDs and Au NCs. These findings are significant for developing the light-harvesting and photoelectric devices based on semiconductor QDs and metal NCs.

1.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
,
Renewable Sustainable Energy Rev.
39
,
748
764
(
2014
).
2.
Y.
Zhang
,
J.
Ren
,
Y.
Pu
, and
P.
Wang
,
Renewable Energy
149
,
577
586
(
2020
).
3.
F.
Chen
,
Z.
Shi
,
J.
Chen
,
Q.
Cui
,
A.
Jian
,
Y.
Zhu
,
Q.
Xu
,
Z.
Lou
, and
C.
Xu
,
Appl. Phys. Lett.
118
,
171901
(
2021
).
4.
C.-X.
Qian
,
Z.-Y.
Deng
,
K.
Yang
,
J.
Feng
,
M.-Z.
Wang
,
Z.
Yang
,
S.
Liu
, and
H.-J.
Feng
,
Appl. Phys. Lett.
112
,
093901
(
2018
).
5.
C. S.
Ponseca
,
P.
Chábera
,
J.
Uhlig
,
P.
Persson
, and
V.
Sundström
,
Chem. Rev.
117
,
10940
11024
(
2017
).
6.
R.
Ahmad
,
R.
Srivastava
,
S.
Yadav
,
D.
Singh
,
G.
Gupta
,
S.
Chand
, and
S.
Sapra
,
J. Phys. Chem. Lett.
8
,
1729
1738
(
2017
).
7.
A.
Boulesbaa
,
K.
Wang
,
M.
Mahjouri-Samani
,
M.
Tian
,
A. A.
Puretzky
,
I.
Ivanov
,
C. M.
Rouleau
,
K.
Xiao
,
B. G.
Sumpter
, and
D. B.
Geohegan
,
J. Am. Chem. Soc.
138
,
14713
14719
(
2016
).
8.
S.
Padgaonkar
,
C. T.
Eckdahl
,
J. K.
Sowa
,
R.
López-Arteaga
,
D. E.
Westmoreland
,
E. F.
Woods
,
S.
Irgen-Gioro
,
B.
Nagasing
,
T.
Seideman
,
M. C.
Hersam
,
J. A.
Kalow
, and
E. A.
Weiss
,
Nano Lett.
21
,
854
860
(
2021
).
9.
G. S.
Selopal
,
H.
Zhao
,
Z. M.
Wang
, and
F.
Rosei
,
Adv. Funct. Mater.
30
,
1908762
(
2020
).
10.
M. K.
Mahato
,
C.
Govind
,
V.
Karunakaran
,
S.
Nandy
,
C.
Sudakar
, and
E.
Prasad
,
J. Phys. Chem. C
123
,
20512
20521
(
2019
).
11.
Q.
Liu
,
J.
Huan
,
N.
Hao
,
J.
Qian
,
H.
Mao
, and
K.
Wang
,
ACS Appl. Mater. Interfaces
9
,
18369
18376
(
2017
).
12.
H.
Mandal
,
M.
Chakali
,
M.
Venkatesan
, and
P. R.
Bangal
,
J. Phys. Chem. C
125
,
4750
4763
(
2021
).
13.
C. R.
McGranahan
,
G. E.
Wolfe
,
A.
Falca
, and
D. F.
Watson
,
ACS Appl. Mater. Interfaces
13
,
30980
30991
(
2021
).
14.
J.
Jaiswal
,
A.
Sanger
,
P.
Tiwari
, and
R.
Chandra
,
Sens. Actuators, B
305
,
127437
(
2020
).
15.
J. K.
Vaishnav
and
T. K.
Mukherjee
,
J. Phys. Chem. C
122
,
28324
28336
(
2018
).
16.
H.
Zhu
,
N.
Song
, and
T.
Lian
,
J. Am. Chem. Soc.
133
,
8762
8771
(
2011
).
17.
M. C.
Sekhar
and
A.
Samanta
,
J. Phys. Chem. C
119
,
15661
15668
(
2015
).
18.
B. M.
Graff
,
B. P.
Bloom
,
E.
Wierzbinski
, and
D. H.
Waldeck
,
J. Am. Chem. Soc.
138
,
13260
13270
(
2016
).
19.
A.
Munir
,
K. S.
Joya
,
T.
Ul haq
,
N.-U.-A.
Babar
,
S. Z.
Hussain
,
A.
Qurashi
,
N.
Ullah
, and
I.
Hussain
,
ChemSusChem
12
,
1517
1548
(
2019
).
20.
A.
Medda
,
A.
Dutta
,
D.
Bain
,
M. K.
Mohanta
,
D.
Sarkar
, and
A.
Patra
,
J. Phys. Chem. C
124
,
19793
19801
(
2020
).
21.
Y.
Wang
,
X.-H.
Liu
,
R.
Wang
,
B.
Cula
,
Z.-N.
Chen
,
Q.
Chen
,
N.
Koch
, and
N.
Pinna
,
J. Am. Chem. Soc.
143
,
9595
9600
(
2021
).
22.
C.
Yang
,
Y.
Meng
,
S.
Xia
, and
G.
Pan
,
J. Phys. Chem. C
124
,
22212
22220
(
2020
).
23.
Y.-S.
Chen
,
H.
Choi
, and
P. V.
Kamat
,
J. Am. Chem. Soc.
135
,
8822
8825
(
2013
).
24.
M. A.
Abbas
,
P. V.
Kamat
, and
J. H.
Bang
,
ACS Energy Lett.
3
,
840
854
(
2018
).
25.
H.-H.
Deng
,
K.-Y.
Huang
,
S.-B.
He
,
L.-P.
Xue
,
H.-P.
Peng
,
D.-J.
Zha
,
W.-M.
Sun
,
X.-H.
Xia
, and
W.
Chen
,
Anal. Chem.
92
,
2019
2026
(
2020
).
26.
H.-H.
Deng
,
K.-Y.
Huang
,
C.-T.
Zhu
,
J.-F.
Shen
,
X.-P.
Zhang
,
H.-P.
Peng
,
X.-H.
Xia
, and
W.
Chen
,
J. Phys. Chem. Lett.
12
,
876
883
(
2021
).
27.
S.
Patra
and
A.
Samanta
,
J. Phys. Chem. C
117
,
23313
23321
(
2013
).
28.
H.-H.
Deng
,
X.-Q.
Shi
,
F.-F.
Wang
,
H.-P.
Peng
,
A.-L.
Liu
,
X.-H.
Xia
, and
W.
Chen
,
Chem. Mater.
29
,
1362
1369
(
2017
).
29.
P.
Raghavendra
,
G.
Vishwakshan Reddy
,
R.
Sivasubramanian
,
P.
Sri Chandana
, and
L.
Subramanyam Sarma
,
Int. J. Hydrogen Energy
43
,
4125
4135
(
2018
).
30.
H.
Wang
,
W.
Zhao
,
Y.
Zhao
,
C.-H.
Xu
,
J.-J.
Xu
, and
H.-Y.
Chen
,
Anal. Chem.
92
,
14006
14011
(
2020
).
31.
M. A.
Jhonsi
and
R.
Renganathan
,
J. Colloid Interface Sci.
344
,
596
602
(
2010
).
32.
B.
Paramanik
,
S.
Bhattacharyya
, and
A.
Patra
,
Chem. Eur. J.
19
,
5980
5987
(
2013
).
33.
L.
Shang
,
S.
Brandholt
,
F.
Stockmar
,
V.
Trouillet
,
M.
Bruns
, and
G. U.
Nienhaus
,
Small
8
,
661
665
(
2012
).
34.
W. W.
Yu
,
L.
Qu
,
W.
Guo
, and
X.
Peng
,
Chem. Mater.
15
,
2854
2860
(
2003
).
35.
X.
Wen
,
P.
Yu
,
Y.-R.
Toh
,
Y.-C.
Lee
,
K.-Y.
Huang
,
S.
Huang
,
S.
Shrestha
,
G.
Conibeer
, and
J.
Tang
,
J. Mater. Chem. C
2
,
3826
3834
(
2014
).
36.
N.
Mondal
and
A.
Samanta
,
J. Phys. Chem. C
120
,
650
658
(
2016
).
37.
L.
Wu
,
Y.
Chen
,
H.
Zhou
, and
H.
Zhu
,
ACS Nano
13
,
2341
2348
(
2019
).
38.
H.
Chen
,
X.
Wen
,
J.
Zhang
,
T.
Wu
,
Y.
Gong
,
X.
Zhang
,
J.
Yuan
,
C.
Yi
,
J.
Lou
,
P. M.
Ajayan
,
W.
Zhuang
,
G.
Zhang
, and
J.
Zheng
,
Nat. Commun.
7
,
12512
(
2016
).
39.
E.
Rathore
,
K.
Maji
,
D.
Rao
,
B.
Saha
, and
K.
Biswas
,
J. Phys. Chem. Lett.
11
,
8002
8007
(
2020
).
40.
Z. A.
VanOrman
,
A. S.
Bieber
,
S.
Wieghold
, and
L.
Nienhaus
,
Chem. Mater.
32
,
4734
4742
(
2020
).
41.
S.
Kaniyankandy
,
S.
Rawalekar
, and
H. N.
Ghosh
,
J. Phys. Chem. C
116
,
16271
16275
(
2012
).
42.
J.
Hardy
,
M. W.
Brett
,
l.
Rossi
,
I.
Wagner
,
K.
Chen
,
M. S.
Timmer
,
B. L.
Stocker
,
M. B.
Price
, and
N. J. L. K.
Davis
,
J. Phys. Chem. C
125
,
1447
1453
(
2021
).
43.
A. O. A.
Tanoh
,
N.
Gauriot
,
G.
Delport
,
J.
Xiao
,
R.
Pandya
,
J.
Sung
,
J.
Allardice
,
Z.
Li
,
C. A.
Williams
,
A.
Baldwin
,
S. D.
Stranks
, and
A.
Rao
,
ACS Nano
14
,
15374
15384
(
2020
).
44.
W.
Yang
,
L.
Zhang
,
J.
Xie
,
X.
Zhang
,
Q.
Liu
,
T.
Yao
,
S.
Wei
,
Q.
Zhang
, and
Y.
Xie
,
Angew. Chem. Int. Ed.
55
,
6716
6720
(
2016
).
45.
J.-J.
Chen
,
F.
Ren
,
Y.
Li
,
D. P.
Norton
,
S. J.
Pearton
,
A.
Osinsky
,
J. W.
Dong
,
P. P.
Chow
, and
J. F.
Weaver
,
Appl. Phys. Lett.
87
,
192106
(
2005
).
46.
F. D.
Lewis
,
R. M.
Young
, and
M. R.
Wasielewski
,
Acc. Chem. Res.
51
,
1746
1754
(
2018
).
47.
V. I.
Klimov
,
Annu. Rev. Phys. Chem.
58
,
635
673
(
2007
).
48.
J.
Huang
,
Z.
Huang
,
S.
Jin
, and
T.
Lian
,
J. Phys. Chem. C
112
,
19734
19738
(
2008
).
49.
L.
Wang
,
K.
Nonaka
,
T.
Okuhata
,
T.
Katayama
, and
N.
Tamai
,
J. Phys. Chem. C
122
,
12038
12046
(
2018
).
50.
Y.
Zhong
,
D.
Ostach
,
M.
Scholz
,
S. W.
Epp
,
S.
Techert
,
I.
Schlichting
,
J.
Ullrich
, and
F. S.
Krasniqi
,
J. Phys.: Condens. Matter
29
,
095701
(
2017
).
51.
K.
Tvrdy
,
P. A.
Frantsuzov
, and
P. V.
Kamat
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
29
34
(
2011
).
52.
L.
Wang
,
Z.
Chen
,
G.
Liang
,
Y.
Li
,
R.
Lai
,
T.
Ding
, and
K.
Wu
,
Nat. Commun.
10
,
4532
(
2019
).
53.
P.
Kambhampati
,
J. Phys. Chem. C
115
,
22089
22109
(
2011
).

Supplementary Material

You do not currently have access to this content.