A large fraction of the world's population lacks access to the electric grid. Standard photovoltaic (PV) cells can provide a renewable off-grid source of electricity but only produce power from daytime solar irradiance and do not produce power at night. While there have been several theoretical proposals and experimental demonstrations of energy harvesting from the radiative cooling of a PV cell at night, the achieved power density is very low. Here, we construct a device, which incorporates a thermoelectric generator that harvests electricity from the temperature difference between the PV cell and the ambient surrounding. We achieve 50 mW/m2 nighttime power generation with a clear night sky, with an open-circuit voltage of 100 mV, which is orders of magnitude higher as compared with previous demonstrations. During the daytime, the thermoelectric generator also provides additional power on top of the electric power generated directly from the PV cells. Our system can be used as a continuous renewable power source for both day- and nighttime in off-grid locations.

1.
S. D.
Comello
,
S. J.
Reichelstein
,
A.
Sahoo
, and
T. S.
Schmidt
,
World Dev.
93
,
94
(
2017
).
2.
P.
Sandwell
,
N. L. A.
Chan
,
S.
Foster
,
D.
Nagpal
,
C. J. M.
Emmott
,
C.
Candelise
,
S. J.
Buckle
,
N.
Ekins-Daukes
,
A.
Gambhir
, and
J.
Nelson
,
Sol. Energy Mater. Sol. Cells
156
,
147
(
2016
).
3.
U.
Deichmann
,
C.
Meisner
,
S.
Murray
, and
D.
Wheeler
,
Energy Policy
39
,
215
(
2011
).
4.
C. G.
Granqvist
and
A.
Hjortsberg
,
J. Appl. Phys.
52
,
4205
(
1981
).
5.
D.
Zhao
,
A.
Aili
,
Y.
Zhai
,
S.
Xu
,
G.
Tan
,
X.
Yin
, and
R.
Yang
,
Appl. Phys. Rev.
6
,
021306
(
2019
).
6.
B.
Zhao
,
M.
Hu
,
X.
Ao
,
N.
Chen
, and
G.
Pei
,
Appl. Energy
236
,
489
(
2019
).
7.
B.
Bartoli
,
S.
Catalanotti
,
B.
Coluzzi
,
V.
Cuomo
,
V.
Silvestrini
, and
G.
Troise
,
Appl. Energy
3
,
267
(
1977
).
8.
A. R.
Gentle
and
G. B.
Smith
,
Nano Lett.
10
,
373
(
2010
).
9.
E.
Rephaeli
,
A.
Raman
, and
S.
Fan
,
Nano Lett.
13
,
1457
(
2013
).
10.
A. P.
Raman
,
M. A.
Anoma
,
L.
Zhu
,
E.
Rephaeli
, and
S.
Fan
,
Nature
515
,
540
(
2014
).
11.
M.
Hossain
and
M.
Gu
,
Adv. Sci.
3
,
1500360
(
2016
).
12.
M.
Zeyghami
,
D. Y.
Goswami
, and
E.
Stefanakos
,
Sol. Energy Mater. Sol. Cells
178
,
115
(
2018
).
13.
H. S.
Bagiorgas
and
G.
Mihalakakou
,
Renewable Energy
33
,
1220
(
2008
).
14.
S.
Zhang
and
J.
Niu
,
Energy Build.
54
,
122
(
2012
).
15.
S. J.
Byrnes
,
R.
Blanchard
, and
F.
Capasso
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
3927
(
2014
).
16.
S.
Buddhiraju
,
P.
Santhanam
, and
S.
Fan
,
Proc. Natl. Acad. Sci. U. S. A.
115
,
E3609
(
2018
).
17.
W.
Li
,
S.
Buddhiraju
, and
S.
Fan
,
Light Sci. Appl.
9
,
68
(
2020
).
18.
L.
Fan
,
L.
Fan
,
W.
Li
,
W.
Jin
,
M.
Orenstein
,
S.
Fan
, and
S.
Fan
,
Opt. Express
28
,
25460
(
2020
).
19.
B.
Lorenzi
,
B.
Lorenzi
,
B.
Lorenzi
,
Y.
Tsurimaki
,
A.
Kobayashi
,
M.
Takashiri
,
S. V.
Boriskina
, and
S. V.
Boriskina
,
Opt. Express
28
,
27644
(
2020
).
20.
P.
Santhanam
and
S.
Fan
,
Phys. Rev. B
93
,
161410
(
2016
).
21.
T.
Liao
,
X.
Zhang
,
X.
Chen
,
B.
Lin
, and
J.
Chen
,
Opt. Lett.
42
,
3236
(
2017
).
22.
M.
Ono
,
P.
Santhanam
,
W.
Li
,
B.
Zhao
, and
S.
Fan
,
Appl. Phys. Lett.
114
,
161102
(
2019
).
23.
A. P.
Raman
,
W.
Li
, and
S.
Fan
,
Joule
3
,
2679
2686
(
2019
).
24.
G.
Li
,
S.
Shittu
,
T. M. O.
Diallo
,
M.
Yu
,
X.
Zhao
, and
J.
Ji
,
Energy
158
,
41
(
2018
).
25.
W. G. J. H. M.
Van Sark
,
Appl. Energy
88
,
2785
(
2011
).
26.
O.
Rejeb
,
S.
Shittu
,
C.
Ghenai
,
G.
Li
,
X.
Zhao
, and
M.
Bettayeb
,
Renewable Energy
152
,
1342
(
2020
).
27.
B.
Zhao
,
M.
Hu
,
X.
Ao
,
Q.
Xuan
,
Z.
Song
, and
G.
Pei
,
Sol. Energy Mater. Sol. Cells
228
,
111136
(
2021
).
28.
W.
Li
,
Y.
Shi
,
Z.
Chen
, and
S.
Fan
,
Nat. Commun.
9
,
4240
(
2018
).
29.
Marlow, Technical data sheet for TG12-4 (online); see https://www.ii-vi.com/wp-content/uploads/2020/07/TG12-4.pdf.
30.
P.
Berdahl
and
R.
Fromberg
,
Sol. Energy
29
,
299
(
1982
).
31.
W.
Li
,
Y.
Shi
,
K.
Chen
,
L.
Zhu
, and
S.
Fan
,
ACS Photonics
4
,
774
(
2017
).

Supplementary Material

You do not currently have access to this content.