Cost-effective and highly efficient near-infrared photodetectors are urgently demanded in many electronic and optoelectronic products for applications in both military and civil areas. Herein, by using a simple solution-based drop-casting technique, we fabricate a Ti3C2Tx MXene/Ge two-dimensional/three-dimensional van der Waals heterostructure, which can function well as a highly efficient near-infrared photodetector. When shined by 1550 nm light illumination, the heterostructure exhibits an apparent photovoltaic effect and can, thus, work as a self-driven near-infrared photodetector. A representative photodetector achieves a photocurrent responsivity of ∼314.3 mA W−1 at zero bias voltage, which can be improved to as high as ∼642.6 mA W−1 by applying a small reverse bias voltage of −1 V. In addition, other critical performance parameters such as current on/off ratio, specific detectivity, and response speed are estimated to be ∼430, ∼2.01 × 1011 Jones, and 17.6/13.6 μs, respectively. The excellent device performance is comparable to that of many previously reported two-dimensional material/Ge heterostructure-based near-infrared photodetectors, which cannot be constructed using facile solution-based processes. This work provides a facile avenue for developing high-performance and low-cost near-infrared photodetectors, which will find important applications in future optoelectronic systems.

1.
G.
Konstantatos
,
I.
Howard
,
A.
Fischer
,
S.
Hoogland
,
J.
Clifford
,
E.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Nature
442
,
180
(
2006
).
2.
P.
Martyniuk
,
J.
Antoszewski
,
M.
Martyniuk
,
L.
Faraone
, and
A.
Rogalski
,
Appl. Phys. Rev.
1
,
041102
(
2014
).
3.
J.
Pei
,
J.
Yang
,
T.
Yildirim
,
H.
Zhang
, and
Y.
Lu
,
Adv. Mater.
31
,
1706945
(
2019
).
4.
J.
Li
,
L.
Niu
,
Z.
Zheng
, and
F.
Yan
,
Adv. Mater.
26
,
5239
(
2014
).
5.
J.
Wang
,
H.
Fang
,
X.
Wang
,
X.
Chen
,
W.
Lu
, and
W.
Hu
,
Small
13
,
1700894
(
2017
).
6.
C.
Xie
and
F.
Yan
,
Small
13
,
1701822
(
2017
).
7.
C.
Liu
,
J.
Guo
,
L.
Yu
,
J.
Li
,
M.
Zhang
,
H.
Li
,
Y.
Shi
, and
D.
Dai
,
Light. Sci. Appl.
10
,
123
(
2021
).
8.
M.
Long
,
P.
Wang
,
H.
Fang
, and
W.
Hu
,
Adv. Funct. Mater.
29
,
1803807
(
2019
).
9.
W.
Chen
,
R.
Liang
,
S.
Zhang
,
Y.
Liu
,
W.
Cheng
,
C.
Sun
, and
J.
Xu
,
Nano Res.
13
,
127
(
2020
).
10.
L.-H.
Zeng
,
M.-Z.
Wang
,
H.
Hu
,
B.
Nie
,
Y.-Q.
Yu
,
C.-Y.
Wu
,
L.
Wang
,
J.-G.
Hu
,
C.
Xie
,
F.-X.
Liang
, and
L.-B.
Luo
,
ACS Appl. Mater. Interfaces
5
,
9362
(
2013
).
11.
L.
Wang
,
J.-J.
Li
,
Q.
Fan
,
Z.-F.
Huang
,
Y.-C.
Lu
,
C.
Xie
,
C.-Y.
Wu
, and
L.-B.
Luo
,
J. Mater. Chem. C
7
,
5019
(
2019
).
12.
K. E.
Chang
,
C.
Kim
,
T. J.
Yoo
,
M. G.
Kwon
,
S.
Heo
,
S.
Kim
,
Y.
Hyun
,
J.
Il Yoo
,
H. C.
Ko
, and
B. H.
Lee
,
Adv. Electron. Mater.
5
,
1800957
(
2019
).
13.
R.
Lu
,
C.-W.
Ge
,
Y.-F.
Zou
,
K.
Zheng
,
D.-D.
Wang
,
T.-F.
Zhang
, and
L.-B.
Luo
,
Laser Photonics Rev.
10
,
595
(
2016
).
14.
L.
Luo
,
D.
Wang
,
C.
Xie
,
J.
Hu
,
X.
Zhao
, and
F.
Liang
,
Adv. Funct. Mater.
29
,
1900849
(
2019
).
15.
D.
Wu
,
J.
Guo
,
J.
Du
,
C.
Xia
,
L.
Zeng
,
Y.
Tian
,
Z.
Shi
,
Y.
Tian
,
X. J.
Li
,
Y. H.
Tsang
, and
J.
Jie
,
ACS Nano
13
,
9907
(
2019
).
16.
H.
Xu
,
A.
Ren
,
J.
Wu
, and
Z.
Wang
,
Adv. Funct. Mater.
30
,
2000907
(
2020
).
17.
X.
Chen
,
Z.
Shi
,
Y.
Tian
,
P.
Lin
,
D.
Wu
,
X.
Li
,
B.
Dong
,
W.
Xu
, and
X.
Fang
,
Mater. Horiz.
8
,
2929
(
2021
).
18.
M.
Hu
,
Z.
Li
,
T.
Hu
,
S.
Zhu
,
C.
Zhang
, and
X.
Wang
,
ACS Nano
10
,
11344
(
2016
).
19.
D.
Er
,
J.
Li
,
M.
Naguib
,
Y.
Gogotsi
, and
V. B.
Shenoy
,
ACS Appl. Mater. Interfaces
6
,
11173
(
2014
).
20.
B.
Xu
,
M.
Zhu
,
W.
Zhang
,
X.
Zhen
,
Z.
Pei
,
Q.
Xue
,
C.
Zhi
, and
P.
Shi
,
Adv. Mater.
28
,
3333
(
2016
).
21.
H.
Fu
,
V.
Ramalingam
,
H.
Kim
,
C.
Lin
,
X.
Fang
,
H. N.
Alshareef
, and
J.
He
,
Adv. Energy Mater.
9
,
1900180
(
2019
).
22.
D.
Pang
,
M.
Alhabeb
,
X.
Mu
,
Y.
Dall'Agnese
,
Y.
Gogotsi
, and
Y.
Gao
,
Nano Lett.
19
,
7443
(
2019
).
23.
W.
Deng
,
H.
Huang
,
H.
Jin
,
W.
Li
,
X.
Chu
,
D.
Xiong
,
W.
Yan
,
F.
Chun
,
M.
Xie
,
C.
Luo
,
L.
Jin
,
C.
Liu
,
H.
Zhang
,
W.
Deng
, and
W.
Yang
,
Adv. Opt. Mater.
7
,
1801521
(
2019
).
24.
L.
Gao
,
C.
Ma
,
S.
Wei
,
A. V.
Kuklin
,
H.
Zhang
, and
H.
Ågren
,
ACS Nano
15
,
954
(
2021
).
25.
K.
Montazeri
,
M.
Currie
,
L.
Verger
,
P.
Dianat
,
M. W.
Barsoum
, and
B.
Nabet
,
Adv. Mater.
31
,
1903271
(
2019
).
26.
J.
Chen
,
Z.
Li
,
F.
Ni
,
W.
Ouyang
, and
X.
Fang
,
Mater. Horiz.
7
,
1828
(
2020
).
27.
S.
Chertopalov
and
V. N.
Mochalin
,
ACS Nano
12
,
6109
(
2018
).
28.
W.
Ouyang
,
J.
Chen
,
J.
He
, and
X.
Fang
,
Adv. Electron. Mater.
6
,
2000168
(
2020
).
29.
X.
Zhang
,
J.
Shao
,
C.
Yan
,
X.
Wang
,
Y.
Wang
,
Z.
Lu
,
R.
Qin
,
X.
Huang
,
J.
Tian
, and
L.
Zeng
,
Mater. Des.
207
,
109850
(
2021
).
30.
T.
Jiang
,
Y.
Huang
, and
X.
Meng
,
Appl. Surf. Sci.
513
,
145813
(
2020
).
31.
Z.
Kang
,
Y.
Ma
,
X.
Tan
,
M.
Zhu
,
Z.
Zheng
,
N.
Liu
,
L.
Li
,
Z.
Zou
,
X.
Jiang
,
T.
Zhai
, and
Y.
Gao
,
Adv. Electron. Mater.
3
,
1700165
(
2017
).
32.
W.
Song
,
Q.
Liu
,
J.
Chen
,
Z.
Chen
,
X.
He
,
Q.
Zeng
,
S.
Li
,
L.
He
,
Z.
Chen
, and
X.
Fang
,
Small
17
,
2100439
(
2021
).
33.
W.
Song
,
J.
Chen
,
Z.
Li
, and
X.
Fang
,
Adv. Mater.
33
,
2101059
(
2021
).
34.
L.
Luo
,
Y.
Huang
,
K.
Cheng
,
A.
Alhassan
,
M.
Alqahtani
,
L.
Tang
,
Z.
Wang
, and
J.
Wu
,
Light. Sci. Appl.
10
,
177
(
2021
).
35.
Q.
Wang
,
S.
Wang
,
X.
Guo
,
L.
Ruan
,
N.
Wei
,
Y.
Ma
,
J.
Li
,
M.
Wang
,
W.
Li
, and
W.
Zeng
,
Adv. Electron. Mater.
5
,
1900537
(
2019
).
36.
S. A.
Shah
,
T.
Habib
,
H.
Gao
,
P.
Gao
,
W.
Sun
,
M. J.
Green
, and
M.
Radovic
,
Chem. Commun.
53
,
400
(
2017
).
37.
Z.
Wang
,
H.
Kim
, and
H. N.
Alshareef
,
Adv. Mater.
30
,
1706656
(
2018
).
38.
D.
Wu
,
J.
Guo
,
C.
Wang
,
X.
Ren
,
Y.
Chen
,
P.
Lin
,
L.
Zeng
,
Z.
Shi
,
X. J.
Li
,
C.-X.
Shan
, and
J.
Jie
,
ACS Nano
15
,
10119
(
2021
).
39.
L.
Wang
,
J.
Jie
,
Z.
Shao
,
Q.
Zhang
,
X.
Zhang
,
Y.
Wang
,
Z.
Sun
, and
S.-T.
Lee
,
Adv. Funct. Mater.
25
,
2910
(
2015
).
40.
C.
Xie
,
Y.
Wang
,
Z. X.
Zhang
,
D.
Wang
, and
L. B.
Luo
,
Nano Today
19
,
41
(
2018
).
41.
X.
An
,
F.
Liu
,
Y. J.
Jung
, and
S.
Kar
,
Nano Lett.
13
,
909
(
2013
).
42.
T.
Nishimura
,
X.
Luo
,
S.
Matsumoto
,
T.
Yajima
, and
A.
Toriumi
,
AIP Adv.
9
,
095013
(
2019
).
43.
X.
Li
,
M.
Zhu
,
M.
Du
,
Z.
Lv
,
L.
Zhang
,
Y.
Li
,
Y.
Yang
,
T.
Yang
,
X.
Li
,
K.
Wang
,
H.
Zhu
, and
Y.
Fang
,
Small
12
,
595
(
2016
).
44.
Y.
Zhang
,
P.
Huang
,
J.
Guo
,
R.
Shi
,
W.
Huang
,
Z.
Shi
,
L.
Wu
,
F.
Zhang
,
L.
Gao
,
C.
Li
,
X.
Zhang
,
J.
Xu
, and
H.
Zhang
,
Adv. Mater.
32
,
2001082
(
2020
).
45.
C.
Xie
,
L.
Zeng
,
Z.
Zhang
,
Y. H.
Tsang
,
L.
Luo
, and
J. H.
Lee
,
Nanoscale
10
,
15285
(
2018
).
46.
M.
Ma
,
H.
Chen
,
K.
Zhou
,
C.
Xie
,
Y.
Liang
,
L.
Wang
,
C.
Wu
,
W.
Yang
,
J.
Guo
, and
L.
Luo
,
J. Mater. Chem. C
9
,
2823
(
2021
).
47.
K. A.
Papadopoulou
,
A.
Chroneos
,
D.
Parfitt
, and
S.-R. G.
Christopoulos
,
J. Appl. Phys.
128
,
170902
(
2020
).
48.
D.
Kufer
,
I.
Nikitskiy
,
T.
Lasanta
,
G.
Navickaite
,
F. H. L.
Koppens
, and
G.
Konstantatos
,
Adv. Mater.
27
,
176
(
2015
).
49.
W.
Cui
,
Z.-Y.
Hu
,
R. R.
Unocic
,
G.
Van Tendeloo
, and
X.
Sang
,
Chin. Chem. Lett.
32
,
339
(
2021
).

Supplementary Material

You do not currently have access to this content.