The unprecedented stability and accuracy of optical atomic clocks extend their role not only in frequency metrology but also in fundamental physics and geodesy. In particular, excellent stability of optical lattice clocks accessing a fractional uncertainty of 10 18 in less than an hour opens a new avenue for chronometric leveling, which resolves a height difference of one cm in a short averaging time. However, for field use of such clocks, there remains a challenge in developing a transportable system that can operate outside the laboratory. In this Perspective, we describe transportable optical lattice clocks and discuss their future applications to chronometric leveling.

1.
M. S.
Safronova
,
D.
Budker
,
D.
DeMille
,
D. F. J.
Kimball
,
A.
Derevianko
, and
C. W.
Clark
, “
Search for new physics with atoms and molecules
,”
Rev. Mod. Phys.
90
,
025008
(
2018
).
2.
C.
R.
Physique
20
,
153
168
(
2019
).
3.
T.
Udem
,
R.
Holzwarth
, and
T. W.
Hänsch
, “
Optical frequency metrology
,”
Nature
416
,
233
(
2002
).
4.
S. T.
Cundiff
and
J.
Ye
, “
Colloquium: Femtosecond optical frequency combs
,”
Rev. Mod. Phys.
75
,
325
342
(
2003
).
5.
B. C.
Young
,
F. C.
Cruz
,
W. M.
Itano
, and
J. C.
Bergquist
, “
Visible lasers with subhertzlinewidths
,”
Phys. Rev. Lett.
82
,
3799
3802
(
1999
).
6.
D. G.
Matei
,
T.
Legero
,
S.
Hafner
,
C.
Grebing
,
R.
Weyrich
,
W.
Zhang
,
L.
Sonderhouse
,
J. M.
Robinson
,
J.
Ye
,
F.
Riehle
, and
U.
Sterr
, “
1.5 μm lasers with sub-10 mHz linewidth
,”
Phys. Rev. Lett.
118
,
263202
(
2017
).
7.
L.-S.
Ma
,
P.
Jungner
,
J.
Ye
, and
J. L.
Hall
, “
Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path
,”
Opt. Lett.
19
,
1777
1779
(
1994
).
8.
F.
Riehle
, “
Optical clock networks
,”
Nat. Photonics
11
,
25
31
(
2017
).
9.
S. M.
Brewer
,
J. S.
Chen
,
A. M.
Hankin
,
E. R.
Clements
,
C. W.
Chou
,
D. J.
Wineland
,
D. B.
Hume
, and
D. R.
Leibrandt
, “
27Al+ quantum-logic clock with a systematic uncertainty below 10–18
,”
Phys. Rev. Lett.
123
,
033201
(
2019
).
10.
T. L.
Nicholson
,
S. L.
Campbell
,
R. B.
Hutson
,
G. E.
Marti
,
B. J.
Bloom
,
R. L.
McNally
,
W.
Zhang
,
M. D.
Barrett
,
M. S.
Safronova
,
G. F.
Strouse
,
W. L.
Tew
, and
J.
Ye
, “
Systematic evaluation of an atomic clock at 2 × 10 18 total uncertainty
,”
Nat. Commun.
6
,
6896
(
2015
).
11.
I.
Ushijima
,
M.
Takamoto
,
M.
Das
,
T.
Ohkubo
, and
H.
Katori
, “
Cryogenic optical lattice clocks
,”
Nat. Photonics
9
,
185
189
(
2015
).
12.
W. F.
McGrew
,
X.
Zhang
,
R. J.
Fasano
,
S. A.
Schaffer
,
K.
Beloy
,
D.
Nicolodi
,
R. C.
Brown
,
N.
Hinkley
,
G.
Milani
,
M.
Schioppo
,
T. H.
Yoon
, and
A. D.
Ludlow
, “
Atomic clock performance enabling geodesy below the centimetre level
,”
Nature
564
,
87
90
(
2018
).
13.
A.
Bjerhammar
, “
On a relativistic geodesy
,”
Bull.Géod.
59
,
207
220
(
1985
).
14.
S. B.
Koller
,
J.
Grotti
,
S.
Vogt
,
A.
Al-Masoudi
,
S.
Dorscher
,
S.
Hafner
,
U.
Sterr
, and
C.
Lisdat
, “
Transportable optical lattice clock with 7 × 10 17 uncertainty
,”
Phys. Rev. Lett.
118
,
073601
(
2017
).
15.
J.
Grotti
,
S.
Koller
,
S.
Vogt
,
S.
Häfner
,
U.
Sterr
,
C.
Lisdat
,
H.
Denker
,
C.
Voigt
,
L.
Timmen
,
A.
Rolland
,
F. N.
Baynes
,
H. S.
Margolis
,
M.
Zampaolo
,
P.
Thoumany
,
M.
Pizzocaro
,
B.
Rauf
,
F.
Bregolin
,
A.
Tampellini
,
P.
Barbieri
,
M.
Zucco
,
G. A.
Costanzo
,
C.
Clivati
,
F.
Levi
, and
D.
Calonico
, “
Geodesy and metrology with a transportable optical clock
,”
Nat. Phys.
14
,
437
441
(
2018
).
16.
F.
Riehle
,
P.
Gill
,
F.
Arias
, and
L.
Robertsson
, “
The CIPM list of recommended frequency standard values: Guidelines and procedures
,”
Metrologia
55
,
188
200
(
2018
).
17.
S.
Origlia
,
M. S.
Pramod
,
S.
Schiller
,
Y.
Singh
,
K.
Bongs
,
R.
Schwarz
,
A.
Al-Masoudi
,
S.
Dörscher
,
S.
Herbers
,
S.
Häfner
,
U.
Sterr
, and
C.
Lisdat
, “
Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms
,”
Phys. Rev. A
98
,
053443
(
2018
).
18.
A.
Derevianko
and
M.
Pospelov
, “
Hunting for topological dark matter with atomic clocks
,”
Nat. Phys.
10
,
933
936
(
2014
).
19.
Y. V.
Stadnik
, “
New bounds on macroscopic scalar-field topological defects from nontransient signatures due to environmental dependence and spatial variations of the fundamental constants
,”
Phys. Rev. D
102
,
115016
(
2020
).
20.
M.
Bondarescu
,
P.
Jetzer
,
N.
Houlié
,
G.
Hetényi
,
A.
Lundgren
,
A.
Schärer
, and
R.
Bondarescu
, “
Ground-based optical atomic clocks as a tool to monitor vertical surface motion
,”
Geophys.J. Int.
202
,
1770
1774
(
2015
).
21.
Y.
Tanaka
and
H.
Katori
, “
Exploring potential applications of optical lattice clocks in a plate subduction zone
,”
J. Geod.
95
,
93
(
2021
).
22.
T.
Ido
and
H.
Katori
, “
Recoil-free spectroscopy of neutral Sr atoms in the Lamb–Dicke regime
,”
Phys. Rev. Lett.
91
,
053001
(
2003
).
23.
H.
Katori
,
M.
Takamoto
,
V. G.
Pal'chikov
, and
V. D.
Ovsiannikov
, “
Ultrastable optical clock with neutral atoms in an engineered light shift trap
,”
Phys. Rev. Lett.
91
,
173005
(
2003
).
24.
H.
Katori
,
V. D.
Ovsiannikov
,
S. I.
Marmo
, and
V. G.
Palchikov
, “
Strategies for reducing the light shift in atomic clocks
,”
Phys. Rev. A
91
,
052503
(
2015
).
25.
H.
Katori
,
Proceedings of the 6th Symposium on Frequency Standards and Metrology
, edited by
P.
Gill
(
World Scientific
,
Singapore
,
2002
), p.
323
.
26.
J. J.
McFerran
,
L.
Yi
,
S.
Mejri
,
W.
Zhang
,
S.
Di Manno
,
M.
Abgrall
,
J.
Guéna
,
Y.
Le Coq
, and
S.
Bize
, “
Statistical uncertainty of 2.5 × 10−16 for the 199Hg 1S0 − 3P0 clock transition against a primary frequency standard
,”
Phys. Rev. A
89
,
043432
(
2014
).
27.
K.
Yamanaka
,
N.
Ohmae
,
I.
Ushijima
,
M.
Takamoto
, and
H.
Katori
, “
Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit
,”
Phys. Rev. Lett.
114
,
230801
(
2015
).
28.
A.
Yamaguchi
,
M. S.
Safronova
,
K.
Gibble
, and
H.
Katori
, “
Narrow-line cooling and determination of the magic wavelength of Cd
,”
Phys. Rev. Lett.
123
,
113201
(
2019
).
29.
A. P.
Kulosa
,
D.
Fim
,
K. H.
Zipfel
,
S.
Ruhmann
,
S.
Sauer
,
N.
Jha
,
K.
Gibble
,
W.
Ertmer
,
E. M.
Rasel
,
M. S.
Safronova
,
U. I.
Safronova
, and
S. G.
Porsev
, “
Towards a Mg lattice clock: Observation of the 1 S 0 3 P 0 transition and determination of the magic wavelength
,”
Phys. Rev. Lett.
115
,
240801
(
2015
).
30.
A.
Golovizin
,
E.
Fedorova
,
D.
Tregubov
,
D.
Sukachev
,
K.
Khabarova
,
V.
Sorokin
, and
N.
Kolachevsky
, “
Inner-shell clock transition in atomic thulium with a small blackbody radiation shift
,”
Nat. Commun.
10
,
1724
(
2019
).
31.
C.
Lisdat
,
S.
Dörscher
,
I.
Nosske
, and
U.
Sterr
, “
Blackbody radiation shift in strontium lattice clocks revisited
,”
Phys. Rev. Res.
3
,
L042036
(
2021
).
32.
K.
Beloy
,
J. A.
Sherman
,
N. D.
Lemke
,
N.
Hinkley
,
C. W.
Oates
, and
A. D.
Ludlow
, “
Determination of the 5d6s 3 D 1 state lifetime and blackbody-radiation clock shift in Yb
,”
Phys. Rev. A
86
,
051404
(
2012
).
33.
V. D.
Ovsiannikov
,
S. I.
Marmo
,
V. G.
Palchikov
, and
H.
Katori
, “
Higher-order effects on the precision of clocks of neutral atoms in optical lattices
,”
Phys. Rev. A
93
,
043420
(
2016
).
34.
P. G.
Westergaard
,
J.
Lodewyck
,
L.
Lorini
,
A.
Lecallier
,
E. A.
Burt
,
M.
Zawada
,
J.
Millo
, and
P.
Lemonde
, “
Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10−17 Level
,”
Phys. Rev. Lett.
106
,
210801
(
2011
).
35.
I.
Ushijima
,
M.
Takamoto
, and
H.
Katori
, “
Operational magic intensity for Sr optical lattice clocks
,”
Phys. Rev. Lett.
121
,
263202
(
2018
).
36.
R. C.
Brown
,
N. B.
Phillips
,
K.
Beloy
,
W. F.
McGrew
,
M.
Schioppo
,
R. J.
Fasano
,
G.
Milani
,
X.
Zhang
,
N.
Hinkley
,
H.
Leopardi
,
T. H.
Yoon
,
D.
Nicolodi
,
T. M.
Fortier
, and
A. D.
Ludlow
, “
Hyperpolarizability and operational magic wavelength in an optical lattice clock
,”
Phys. Rev. Lett.
119
,
253001
(
2017
).
37.
H.
Hachisu
,
K.
Miyagishi
,
S. G.
Porsev
,
A.
Derevianko
,
V. D.
Ovsiannikov
,
V. G.
Pal'chikov
,
M.
Takamoto
, and
H.
Katori
, “
Trapping of neutral mercury atoms and prospects for optical lattice clocks
,”
Phys. Rev. Lett.
100
,
053001
(
2008
).
38.
G.
Santarelli
,
C.
Audoin
,
A.
Makdissi
,
P.
Laurent
,
G. J.
Dick
, and
A.
Clairon
, “
Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator
,”
IEEE Trans. Ultrason. Ferroelectr. Frequency Control
45
,
887
894
(
1998
).
39.
S.
Hafner
,
S.
Falke
,
C.
Grebing
,
S.
Vogt
,
T.
Legero
,
M.
Merimaa
,
C.
Lisdat
, and
U.
Sterr
, “
8 × 10 17 fractional laser frequency instability with a long room-temperature cavity
,”
Opt. Lett.
40
,
2112
2115
(
2015
).
40.
E.
Oelker
,
R. B.
Hutson
,
C. J.
Kennedy
,
L.
Sonderhouse
,
T.
Bothwell
,
A.
Goban
,
D.
Kedar
,
C.
Sanner
,
J. M.
Robinson
,
G. E.
Marti
,
D. G.
Matei
,
T.
Legero
,
M.
Giunta
,
R.
Holzwarth
,
F.
Riehle
,
U.
Sterr
, and
J.
Ye
, “
Demonstration of 4.8 × 10 17 stability at 1s for two independent optical clocks
,”
Nat. Photonics
13
,
714
719
(
2019
).
41.
S.
Hafner
,
S.
Herbers
,
S.
Vogt
,
C.
Lisdat
, and
U.
Sterr
, “
Transportable interrogation laser system with an instability of mod σ y = 3 × 10 16
,”
Opt. Express
28
,
16407
16416
(
2020
).
42.
M.
Takamoto
,
T.
Takano
, and
H.
Katori
, “
Frequency comparison of optical lattice clocks beyond the Dick limit
,”
Nat. Photonics
5
,
288
292
(
2011
).
43.
T.
Takano
,
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
,
T.
Akatsuka
,
A.
Yamaguchi
,
Y.
Kuroishi
,
H.
Munekane
,
B.
Miyahara
, and
H.
Katori
, “
Geopotential measurements with synchronously linked optical lattice clocks
,”
Nat. Photonics
10
,
662
666
(
2016
).
44.
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
,
T.
Yahagi
,
K.
Kokado
,
H.
Shinkai
, and
H.
Katori
, “
Test of general relativity by a pair of transportable optical lattice clocks
,”
Nat. Photonics
14
,
411
415
(
2020
).
45.
M.
Schioppo
,
R. C.
Brown
,
W. F.
McGrew
,
N.
Hinkley
,
R. J.
Fasano
,
K.
Beloy
,
T. H.
Yoon
,
G.
Milani
,
D.
Nicolodi
,
J. A.
Sherman
,
N. B.
Phillips
,
C. W.
Oates
, and
A. D.
Ludlow
, “
Ultrastable optical clock with two cold-atom ensembles
,”
Nat. Photonics
11
,
48
52
(
2017
).
46.
G.
Vallet
,
E.
Bookjans
,
U.
Eismann
,
S.
Bilicki
,
R. L.
Targat
, and
J.
Lodewyck
, “
A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime
,”
New J. Phys.
19
,
083002
(
2017
).
47.
R.
Hobson
,
W.
Bowden
,
A.
Vianello
,
I. R.
Hill
, and
P.
Gill
, “
Cavity-enhanced non-destructive detection of atoms for an optical lattice clock
,”
Opt. Express
27
,
37099
37110
(
2019
).
48.
M. A.
Norcia
,
M. N.
Winchester
,
J. R. K.
Cline
, and
J. K.
Thompson
, “
Superradiance on the millihertz linewidth strontium clock transition
,”
Sci. Adv.
2
,
e1601231
(
2016
).
49.
R.
Kohlhaas
,
A.
Bertoldi
,
E.
Cantin
,
A.
Aspect
,
A.
Landragin
, and
P.
Bouyer
, “
Phase locking a clock oscillator to a coherent atomic ensemble
,”
Phys. Rev. X
5
,
021011
(
2015
).
50.
H.
Katori
, “
Longitudinal Ramsey spectroscopy of atoms for continuous operation of optical clocks
,”
Appl. Phys. Express
14
,
072006
(
2021
).
51.
J.
Davila-Rodriguez
,
F. N.
Baynes
,
A. D.
Ludlow
,
T. M.
Fortier
,
H.
Leopardi
,
S. A.
Diddams
, and
F.
Quinlan
, “
Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation
,”
Opt. Lett.
42
,
1277
1280
(
2017
).
52.
N.
Ohmae
,
M.
Takamoto
,
Y.
Takahashi
,
M.
Kokubun
,
K.
Araki
,
A.
Hinton
,
I.
Ushijima
,
T.
Muramatsu
,
T.
Furumiya
,
Y.
Sakai
,
N.
Moriya
,
N.
Kamiya
,
K.
Fujii
,
R.
Muramatsu
,
T.
Shiimado
, and
H.
Katori
, “
Transportable strontium optical lattice clocks operated outside laboratory at the level of 10 18 uncertainty
,”
Adv. Quantum Technol.
4
,
2100015
(
2021
).
53.
H. G.
Dehmelt
, “
Monoion oscillator as potential ultimate laser frequency standard
,”
IEEE Trans. Instrum. Meas.
IM-31
,
83
87
(
1982
).
54.
P.
Delva
,
N.
Puchades
,
E.
Schonemann
,
F.
Dilssner
,
C.
Courde
,
S.
Bertone
,
F.
Gonzalez
,
A.
Hees
,
C.
Le Poncin-Lafitte
,
F.
Meynadier
,
R.
Prieto-Cerdeira
,
B.
Sohet
,
J.
Ventura-Traveset
, and
P.
Wolf
, “
Gravitational redshift test using eccentric Galileo satellites
,”
Phys. Rev. Lett.
121
,
231101
(
2018
).
55.
S.
Herrmann
,
F.
Finke
,
M.
Lulf
,
O.
Kichakova
,
D.
Puetzfeld
,
D.
Knickmann
,
M.
List
,
B.
Rievers
,
G.
Giorgi
,
C.
Gunther
,
H.
Dittus
,
R.
Prieto-Cerdeira
,
F.
Dilssner
,
F.
Gonzalez
,
E.
Schonemann
,
J.
Ventura-Traveset
, and
C.
Lammerzahl
, “
Test of the gravitational redshift with Galileo satellites in an eccentric orbit
,”
Phys. Rev. Lett.
121
,
231102
(
2018
).
56.
B.
Hofmann-Wellenhof
and
H. E.
Moritz
,
Physical Geodesy
, 2nd ed. (
Springer-Verlag
,
Wien
,
2006
).
57.
P.
Delva
,
H.
Denker
, and
G.
Lion
,
Chronometric Geodesy: Methods and Applications, Relativistic Geodesy, Foundations and Applications
(
Springer International Publishing
,
2019
).
58.
C.
Voigt
,
H.
Denker
, and
L.
Timmen
, “
Time-variable gravity potential components for optical clock comparisons and the definition of international time scales
,”
Metrologia
53
,
1365
1383
(
2016
).
59.
B.
Wouters
,
J. A.
Bonin
,
D. P.
Chambers
,
R. E. M.
Riva
,
I.
Sasgen
, and
J.
Wahr
, “
Grace, time-varying gravity, Earth system dynamics and climate change
,”
Rep. Prog. Phys.
77
,
116801
(
2014
).
60.
J.
Boehm
and
H.
Schuh
,
Atmospheric Effects in Space Geodesy
(
Springer Atmospheric Sciences
,
2013
).
61.
T.
Akatsuka
,
T.
Goh
,
H.
Imai
,
K.
Oguri
,
A.
Ishizawa
,
I.
Ushijima
,
N.
Ohmae
,
M.
Takamoto
,
H.
Katori
,
T.
Hashimoto
,
H.
Gotoh
, and
T.
Sogawa
, “
Optical frequency distribution using laser repeater stations with planar lightwave circuits
,”
Opt. Express
28
,
9186
9197
(
2020
).
62.
K.
Wang
,
Y.
Hu
, and
J.
He
, “
Deformation cycles of subduction earthquakes in a viscoelastic Earth
,”
Nature
484
,
327
332
(
2012
).
63.
K.
Bongs
,
Y.
Singh
,
L.
Smith
,
W.
He
,
O.
Kock
,
D.
Świerad
,
J.
Hughes
,
S.
Schiller
,
S.
Alighanbari
,
S.
Origlia
,
S.
Vogt
,
U.
Sterr
,
C.
Lisdat
,
L.
Targat
,
J.
Lodewyck
,
D.
Holleville
,
B.
Venon
,
S.
Bize
,
G. P.
Barwood
,
P.
Gill
,
I. R.
Hill
,
Y. B.
Ovchinnikov
,
N.
Poli
,
G. M.
Tino
,
J.
Stuhler
, and
W.
Kaenders
, “
Development of a strontium optical lattice clock for the SOC mission on the ISS
,”
C. R. Phys.
16
,
553
564
(
2015
).
You do not currently have access to this content.