Polarization-induced (Pi) distributed or bulk doping in GaN, with a zero dopant ionization energy, can reduce temperature or frequency dispersions in impurity-doped p–n junctions caused by the deep-acceptor-nature of Mg, thus offering GaN power devices promising prospects. Before comprehensively assessing the benefits of Pi-doping, ideal junction behaviors and high-voltage capabilities should be confirmed. In this work, we demonstrate near-ideal forward and reverse I–V characteristics in Pi-doped GaN power p–n diodes, which incorporates linearly graded, coherently strained AlGaN layers. Hall measurements show a net increase in the hole concentration of 8.9 × 1016 cm−3 in the p-layer as a result of the polarization charge. In the Pi-doped n-layer, a record-low electron concentration of 2.5 × 1016 cm−3 is realized due to the gradual grading of Al0-0.72GaN over 1 μm. The Pi-doped p–n diodes have an ideality factor as low as 1.1 and a 0.10 V higher turn-on voltage than the impurity-doped p–n diodes due to the increase in the bandgap at the junction edge. A differential specific on-resistance of 0.1 mΩ cm2 is extracted from the Pi-doped p–n diodes, similar with the impurity-doped counterpart. The Pi-doped diodes show an avalanche breakdown voltage of ∼1.25 kV, indicating a high reverse blocking capability even without an ideal edge-termination. This work confirms that distributed Pi-doping can be incorporated in high-voltage GaN power devices to increase hole concentrations while maintaining excellent junction properties.

1.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y. F.
Wu
,
Proc. IEEE
96
,
287
(
2008
).
2.
Y.
Yue
,
Z.
Hu
,
J.
Guo
,
B. S.
Rodriguez
,
G.
Li
,
R.
Wang
,
F.
Faria
,
T.
Fang
,
B.
Song
,
X.
Gao
,
S.
Guo
,
T.
Kosel
,
G.
Snider
,
P.
Fay
,
D.
Jena
, and
H.
Xing
,
IEEE Electron Devices Lett.
33
,
988
(
2012
).
3.
K.
Shinohara
,
D.
Regan
,
A.
Corrion
,
D.
Brown
,
Y.
Tang
,
J.
Wong
,
G.
Candia
,
A.
Schmitz
,
H.
Fung
,
S.
Kim
, and
M.
Micovic
, in
IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2012
), pp.
27
22
.
4.
M.
Zhu
,
B.
Song
,
M.
Qi
,
Z.
Hu
,
K.
Nomoto
,
X.
Yan
,
Y.
Cao
,
W.
Johnson
,
E.
Kohn
,
D.
Jena
,
S.
Member
,
H. G.
Xing
, and
S.
Member
,
IEEE Electron Devices Lett.
36
,
375
(
2015
).
5.
L.
Nela
,
J.
Ma
,
C.
Erine
,
P.
Xiang
,
T.-H.
Shen
,
V.
Tileli
,
T.
Wang
,
K.
Cheng
, and
E.
Matioli
,
Nat. Electron.
4
,
284
(
2021
).
6.
K. J.
Chen
,
O.
Häberlen
,
A.
Lidow
,
C. L.
Tsai
,
T.
Ueda
,
Y.
Uemoto
, and
Y.
Wu
,
IEEE Trans. Electron Devices
64
,
779
(
2017
).
7.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
A. J.
Sierakowski
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
A.
Mitchell
, and
M.
Stutzmann
,
J. Appl. Phys.
87
,
334
(
2000
).
8.
R.
Chaudhuri
,
S. J.
Bader
,
Z.
Chen
,
D. A.
Muller
,
H. G.
Xing
, and
D.
Jena
,
Science
365
,
1454
(
2019
).
9.
D.
Jena
,
S.
Heikman
,
D.
Green
,
D.
Buttari
,
R.
Coffie
,
H.
Xing
,
S.
Keller
,
S.
DenBaars
,
J. S.
Speck
,
U. K.
Mishra
, and
I.
Smorchkova
,
Appl. Phys. Lett.
81
,
4395
(
2002
).
10.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
,
Science
327
,
60
(
2010
).
11.
P.
Kozodoy
,
S. P.
DenBaars
, and
U. K.
Mishra
,
J. Appl. Phys.
87
,
770
(
2000
).
12.
W.
Shockley
and
W. T.
Read
,
Phys. Rev.
87
,
835
(
1952
).
13.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
New Jersey
,
2006
), p.
519
.
14.
I. C.
Kizilyalli
,
A. P.
Edwards
,
H.
Nie
,
D.
Disney
, and
D.
Bour
,
IEEE Trans. Electron Devices
60
,
3067
(
2013
).
15.
K.
Nomoto
,
Z.
Hu
,
B.
Song
,
M.
Zhu
,
M.
Qi
,
R.
Yan
,
V.
Protasenko
,
E.
Imhoff
,
J.
Kuo
,
N.
Kaneda
,
T.
Mishima
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, in
IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2015
).
16.
K.
Nomoto
,
B.
Song
,
Z.
Hu
,
M.
Zhu
,
M.
Qi
,
N.
Kaneda
,
T.
Mishima
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
37
,
161
(
2016
).
17.
Z.
Hu
,
K.
Nomoto
,
B.
Song
,
M.
Zhu
,
M.
Qi
,
M.
Pan
,
X.
Gao
,
V.
Protasenko
,
D.
Jena
, and
H.
Xing
,
Appl. Phys. Lett.
107
,
243501
(
2015
).
18.
A. M.
Armstrong
,
A. A.
Allerman
,
A. J.
Fischer
,
M. P.
King
,
M. S.
Van Heukelom
,
M. W.
Moseley
,
R. J.
Kaplar
,
J. J.
Wierer
,
M. H.
Crawford
, and
J. R.
Dickerson
,
Electron. Lett.
52
,
1170
(
2016
).
19.
J.
Wang
,
L.
Cao
,
J.
Xie
,
E.
Beam
,
R.
McCarthy
,
C.
Youtsey
, and
P.
Fay
,
Appl. Phys. Lett.
113
,
023502
(
2018
).
20.
H.
Fu
,
K.
Fu
,
S. R.
Alugubelli
,
C.-Y.
Cheng
,
X.
Huang
,
H.
Chen
,
T.-H.
Yang
,
C.
Yang
,
J.
Zhou
,
J.
Montes
,
X.
Deng
,
X.
Qi
,
S. M.
Goodnick
,
F. A.
Ponce
, and
Y.
Zhao
,
IEEE Electron Device Lett.
41
,
127
(
2020
).
21.
H.
Ohta
,
N.
Asai
,
F.
Horikiri
,
Y.
Narita
,
T.
Yoshida
, and
T.
Mishima
,
IEEE Electron Device Lett.
41
,
123
(
2020
).
22.
K. W.
Nie
,
W. Z.
Xu
,
F. F.
Ren
,
D.
Zhou
,
D. F.
Pan
,
J. D.
Ye
,
D. J.
Chen
,
R.
Zhang
,
Y. D.
Zheng
, and
H.
Lu
,
IEEE Electron Device Lett.
41
,
469
(
2020
).
23.
Z.
Bian
,
K.
Zeng
, and
S.
Chowdhury
,
IEEE Electron Device Lett.
(on line
2022
).
24.
T.
Maeda
,
T.
Narita
,
H.
Ueda
,
M.
Kanechika
,
T.
Uesugi
,
T.
Kachi
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
, in IEEE International Electron Devices Meeting (IEDM) (
2018
).
25.
H.
Fukushima
,
S.
Usami
,
M.
Ogura
,
Y.
Ando
,
A.
Tanaka
,
M.
Deki
,
M.
Kushimoto
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
,
Jpn. J. Appl. Phys., Part 1
58
,
SCCD25
(
2019
).
26.
T.
Oka
,
T.
Ina
,
Y.
Ueno
, and
J.
Nishii
,
Appl. Phys. Express
8
,
054101
(
2015
).
27.
H.
Nie
,
Q.
Diduck
,
B.
Alvarez
,
A. P.
Edwards
,
B. M.
Kayes
,
M.
Zhang
,
G.
Ye
,
T.
Prunty
,
D.
Bour
, and
I. C.
Kizilyalli
,
IEEE Electron Device Lett.
35
,
939
(
2014
).
28.
D.
Shibata
,
R.
Kajitani
,
M.
Ogawa
,
K.
Tanaka
,
S.
Tamura
,
T.
Hatsuda
,
M.
Ishida
, and
T.
Ueda
, in
Technical Digest-IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2016
), pp. 10–1.
29.
D.
Ji
,
C.
Gupta
,
S. H.
Chan
,
A.
Agarwal
,
W.
Li
,
S.
Keller
,
U. K.
Mishra
, and
S.
Chowdhury
, in
IEEE International Electron Devices Meeting (IEDM)
(IEEE, 2017), pp. 9–4.
30.
Y.
Zhang
,
M.
Sun
,
D.
Piedra
,
J.
Hu
,
Z.
Liu
,
Y.
Lin
,
X.
Gao
,
K.
Shepard
, and
T.
Palacios
, in
IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2017
), pp. 9–2.
31.
W.
Li
,
K.
Nomoto
,
K.
Lee
,
S. M.
Islam
,
Z.
Hu
,
M.
Zhu
,
X.
Gao
,
M.
Pilla
,
D.
Jena
, and
H. G.
Xing
,
IEEE Trans. Electron Devices
65
,
2558
(
2018
).
32.
W.
Li
,
K.
Nomoto
,
K.
Lee
,
S. M.
Islam
,
Z.
Hu
,
M.
Zhu
,
X.
Gao
,
J.
Xie
,
M.
Pilla
,
D.
Jena
, and
H. G.
Xing
,
Appl. Phys. Lett.
113
,
062105
(
2018
).
33.
T.
Narita
,
K.
Tomita
,
S.
Yamada
, and
T.
Kachi
,
Appl. Phys. Express
12
,
011006
(
2019
).
34.
H. G.
Xing
,
B.
Song
,
M.
Zhu
,
Z.
Hu
,
M.
Qi
,
K.
Nomoto
, and
D.
Jena
, in
Proceedings 73rd Annual Device Research Conference (DRC)
(IEEE,
2015
), p.
51
.
35.
W.
Li
,
K.
Nomoto
,
A.
Sundar
,
K.
Lee
,
M.
Zhu
,
Z.
Hu
,
E.
Beam
,
J.
Xie
,
M.
Pilla
,
X.
Gao
,
S.
Rouvimov
,
D.
Jena
, and
H. G.
Xing
,
Jpn. J. Appl. Phys., Part 1
58
,
SCCD15
(
2019
).
36.
W.
Li
,
M.
Zhu
,
K.
Nomoto
,
Z.
Hu
,
X.
Gao
,
M.
Pilla
,
D.
Jena
, and
H. G.
Xing
, in
31st International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(IEEE,
2018
), p.
228
.
37.
S.
Li
,
M.
Ware
,
J.
Wu
,
P.
Minor
,
Z.
Wang
,
Z.
Wu
,
Y.
Jiang
, and
G. J.
Salamo
,
Appl. Phys. Lett.
101
,
122103
(
2012
).
38.
Y.
Enatsu
,
C.
Gupta
,
S.
Keller
,
S.
Nakamura
, and
U. K.
Mishra
,
Semicond. Sci. Technol.
32
,
105013
(
2017
).
39.
M.
Qi
,
K.
Nomoto
,
M.
Zhu
,
Z.
Hu
,
Y.
Zhao
,
B.
Song
,
G.
Li
,
P.
Fay
,
H.
Xing
, and
D.
Jena
, in
73rd Annual Device Research Conference (DRC)
(IEEE,
2015
), p.
31
.
40.
C.
De Santi
,
E.
Fabris
,
K.
Nomoto
,
Z.
Hu
,
W.
Li
,
X.
Gao
,
D.
Jena
,
H. G.
Xing
,
G.
Meneghesso
,
M.
Meneghini
, and
E.
Zanoni
, in
IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2018
), pp.
30
32
.
41.
E.
Fabris
,
C.
De Santi
,
A.
Caria
,
K.
Nomoto
,
Z.
Hu
,
W.
Li
,
X.
Gao
,
D.
Jena
,
H. G.
Xing
,
G.
Meneghesso
,
E.
Zanoni
, and
M.
Meneghini
,
IEEE Trans. Electron Devices
66
,
4597
(
2019
).
42.
M.
Zhu
,
M.
Qi
,
K.
Nomoto
,
Z.
Hu
,
B.
Song
,
M.
Pan
,
X.
Gao
,
D.
Jena
, and
H. G.
Xing
,
Appl. Phys. Lett.
110
,
182102
(
2017
).
43.
Z.
Hu
,
K.
Nomoto
,
M.
Qi
,
W.
Li
,
M.
Zhu
,
X.
Gao
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
38
,
1071
(
2017
).
44.
Y.
Cao
,
R.
Chu
,
R.
Li
,
M.
Chen
, and
A. J.
Williams
,
Appl. Phys. Lett.
108
,
112101
(
2016
).
45.
F.
Yun
,
M. A.
Reshchikov
,
L.
He
,
T.
King
,
H.
Morkoç
,
S. W.
Novak
, and
L.
Wei
,
J. Appl. Phys.
92
,
4837
(
2002
).
46.
S.
Han
,
S.
Yang
,
Y.
Li
,
Y.
Liu
, and
K.
Sheng
, in
31st International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(IEEE,
2019
), p.
63
.
47.
T.
Maeda
,
T.
Narita
,
S.
Yamada
,
T.
Kachi
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
,
IEEE Electron Device Lett.
43
,
96
(
2022
).
48.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
,
Appl. Phys. Express
12
,
124003
(
2019
).
You do not currently have access to this content.