Spin-squeezing is a well-established “quantum technology,” where well-designed correlations in an ensemble of two-level systems reduce the statistical uncertainty of spectroscopic experiments. This paper reviews some important advances in the field, with emphasis on the author's contributions concerning, in particular, the fundamental limits imposed by decoherence. Building on the material presented in the first part, new ideas and some promising developments are outlined in the last section.

1.
M.
Kitagawa
and
M.
Ueda
, “
Squeezed spin states
,”
Phys. Rev. A.
47
,
5138
(
1993
).
2.
D. J.
Wineland
,
J. J.
Bollinger
,
W. M.
Itano
,
F. L.
Moore
, and
D. J.
Heinzen
, “
Spin squeezing and reduced quantum noise in spectroscopy
,”
Phys. Rev. A
46
,
R6797
(
1992
).
3.
By non-Gaussian states, we mean spin states for which the Wigner representation on the Bloch sphere13 is non-Gaussian and has fine structures that make the state more sensitive to rotation.
4.
M.
Gessner
,
A.
Smerzi
, and
L.
Pezzè
, “
Metrological nonlinear squeezing parameter
,”
Phys. Rev. Lett.
122
,
090503
(
2019
).
5.
Y.
Baamara
,
A.
Sinatra
, and
M.
Gessner
, “
Scaling laws for the sensitivity enhancement of non-Gaussian spin states
,”
Phys. Rev. Lett.
127
,
160501
(
2021
).
6.
Y.
Baamara
,
A.
Sinatra
, and
M.
Gessner
, “
Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: An analytical study
,” arXiv:2112.01786
C. R. Phys.
(
2021
).
7.
A.
Sørensen
,
L. M.
Duan
,
J. I.
Cirac
, and
P.
Zoller
, “
Many-particle entanglement with Bose–Einstein condensates
,”
Nature
409
,
63
(
2001
).
8.
Y.
Li
,
P.
Treutlein
,
J.
Reichel
, and
A.
Sinatra
, “
Spin squeezing in a bimodal condensate: Spatial dynamics and particle losses
,”
Eur. Phys. J. B
68
,
365
(
2009
).
9.
M. H.
Schleier-Smith
,
I. D.
Leroux
, and
V.
Vuletic̀
, “
Squeezing the collective spin of a dilute atomic ensemble by cavity feedback
,”
Phys. Rev. A
81
,
021804
(
2010
).
10.
The Stokes spin P ̂ is obtained from the two polarization modes x and y of an electromagnetic field propagating in the z-direction P x = 1 2 ( c x c x c y c y ) and P y + i P z = c x c y, where c α is the annihilation operator of a photon polarized in the direction α = x , y.
11.
A.
Kuzmich
,
N. P.
Bigelow
, and
L.
Mandel
, “
Atomic quantum non-demolition measurements and squeezing
,”
Europhys. Lett.
42
,
481
(
1998
).
12.
When the two spins are initially polarized along the x-direction, with P ̂ x n ph / 2 where n ph is the number of photons in the mode and S ̂ x N / 2 where N is the number of atoms, the y-component of the Stokes spin correlates with the z-component of the atomic spin since [ P ̂ y , H Faraday ] χ ( n ph / 2 ) S ̂ z, thus allowing the measurement of S ̂ z, while the back-action of the measurement affects the y-component of the atomic spin since [ S ̂ y , H Faraday ] χ ( N / 2 ) P ̂ z.
13.
L.
Pezzè
,
A.
Smerzi
,
M. K.
Oberthaler
,
R.
Schmied
, and
P.
Treutlein
, “
Quantum metrology with nonclassical states of atomic ensembles
,”
Rev. Mod. Phys.
90
,
035005
(
2018
).
14.
C.
Gross
,
T.
Zibold
,
E.
Nicklas
,
J.
Estève
, and
M. K.
Oberthaler
, “
Nonlinear atom interferometer surpasses classical precision limit
,”
Nature
464
,
1165
(
2010
).
15.
M. F.
Riedel
,
P.
Böhi
,
Y.
Li
,
T. W.
Hänsch
,
A.
Sinatra
, and
P.
Treutlein
, “
Atom-chip-based generation of entanglement for quantum metrology
,”
Nature
464
,
1170
(
2010
).
16.
I. D.
Leroux
,
M. H.
Schleier-Smith
, and
V.
Vuletic̀
, “
Implementation of cavity squeezing of a collective atomic spin
,”
Phys. Rev. Lett.
104
,
073602
(
2010
).
17.
R. J.
Sewell
,
M.
Koschorreck
,
M.
Napolitano
,
B.
Dubost
,
N.
Behbood
, and
M. W.
Mitchell
, “
Magnetic sensitivity beyond the projection noise limit by spin squeezing
,”
Phys. Rev. Lett.
109
,
253605
(
2012
).
18.
O.
Hosten
,
N. J.
Engelsen
,
R.
Krishnakumar
, and
M. A.
Kasevich
, “
Measurement noise 100 times lower than the quantum-projection limit using entangled atoms
,”
Nature
529
,
505
(
2016
).
19.
H.
Bao
,
J.
Duan
,
S.
Jin
et al, “
Spin squeezing of 1011 atoms by prediction and retrodiction measurements
,”
Nature
581
,
159
(
2020
).
20.
G.
Santarelli
,
P.
Laurent
,
P.
Lemonde
,
A.
Clairon
,
A. G.
Mann
,
S.
Chang
,
A. N.
Luiten
, and
C.
Salomon
, “
Quantum projection noise in an atomic fountain: A high stability cesium frequency standard
,”
Phys. Rev. Lett.
82
,
4619
(
1999
).
21.
E.
Davis
,
G.
Bentsen
, and
M.
Schleier-Smith
, “
Approaching the Heisenberg limit without single-particle detection
,”
Phys. Rev. Lett.
116
,
053601
(
2016
).
22.
T.
Chalopin
,
C.
Bouazza
,
A.
Evrard
,
V.
Makhalov
,
D.
Dreon
,
J.
Dalibard
,
L. A.
Sidorenkov
, and
S.
Nascimbene
, “
Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom
,”
Nat. Commun.
9
,
4955
(
2018
).
23.
S.
Colombo
,
E.
Pedrozo-Peñafiel
,
A. F.
Adiyatullin
,
Z.
Li
,
E.
Mendez
,
C.
Shu
, and
V.
Vuletic̀
, “
Time-reversal-based quantum metrology with many-body entangled states
,” arXiv:2106.03754 (
2021
).
24.
K.
Pawlowski
,
M.
Fadel
,
P.
Treutlein
,
Y.
Castin
, and
A.
Sinatra
, “
Mesoscopic quantum superpositions in bimodal Bose–Einstein condensates: Decoherence and strategies to counteract it
,”
Phys. Rev. A
95
,
063609
(
2017
).
25.
N. N.
Bogolioubov
, “
On the theory of superfluidity
,”
J. Phys. (USSR)
11
,
23
(
1947
).
26.
A.
Sinatra
,
E.
Witkowska
,
J.-C.
Dornstetter
,
Y.
Li
, and
Y.
Castin
, “
Limit of spin squeezing in finite-temperature Bose–Einstein condensates
,”
Phys. Rev. Lett.
107
,
060404
(
2011
).
27.
Y.
Li
,
Y.
Castin
, and
A.
Sinatra
, “
Optimum spin squeezing in Bose–Einstein condensates with particle losses
,”
Phys. Rev. Lett.
100
,
210401
(
2008
).
28.
A.
Sinatra
,
J.-C.
Dornstetter
, and
Y.
Castin
, “
Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature
,”
Front. Phys.
7
,
86
(
2012
).
29.
M.-Z.
Huang
,
J. A.
de la Paz
,
T.
Mazzoni
,
K.
Ott
,
A.
Sinatra
,
C. L. G.
Alzar
, and
J.
Reichel
, “
Self-amplifying spin measurement in a long-lived spin-squeezed state
,” arXiv:2007.01964 (
2020
).
30.
E. P.
Peñafiel
,
S.
Colombo
,
C.
Shu
,
A. F.
Adiyatullin
,
Z.
Li
,
E.
Mendez
,
B.
Braverman
,
A.
Kawasaki
,
D.
Akamatsu
,
Y.
Xiao
, and
V.
Vuletić
, “
Entanglement on an optical atomic-clock transition
,”
Nature
588
,
414
(
2020
).
31.
D.
Kajtoch
,
E.
Witkowska
, and
A.
Sinatra
, “
Spin-squeezed atomic crystal
,”
Europhys. Lett.
123
,
20012
(
2018
).
32.
P.
He
,
M. A.
Perlin
,
S. R.
Muleady
,
R. J.
Lewis-Swan
,
R. B.
Hutson
,
J.
Ye
, and
A. M.
Rey
, “
Engineering spin squeezing in a 3D optical lattice with interacting spin-orbit-coupled fermions
,”
Phys. Rev. Res.
1
,
033075
(
2019
).
33.
D.
Jaksch
,
C.
Bruder
,
J. I.
Cirac
,
C. W.
Gardiner
, and
P.
Zoller
, “
Cold bosonic atoms in optical lattices
,”
Phys. Rev. Lett.
81
,
3108
(
1998
).
34.
M.
Plodzien
,
M.
Koscielski
,
E.
Witkowska
, and
A.
Sinatra
, “
Producing and storing spin-squeezed states and Greenberger–Horne–Zeilinger states in a one-dimensional optical lattice
,”
Phys. Rev. A
102
,
013328
(
2020
).
35.
T.
Akatsuka
,
M.
Takamoto
, and
H.
Katori
, “
Optical lattice clocks with non-interacting bosons and fermions
,”
Nat. Phys.
4
,
954
(
2008
).
36.
S. L.
Campbell
,
R. B.
Hutson
,
G. E.
Marti
,
A.
Goban
,
N.
Darkwah Oppong
,
R. L.
McNally
,
L.
Sonderhouse
,
J. M.
Robinson
,
W.
Zhang
,
B. J.
Bloom
, and
J.
Ye
, “
A Fermi-degenerate three-dimensional optical lattice clock
,”
Science
358
(
6359
),
90
(
2017
).
37.
M.
Gessner
,
L.
Pezzé
, and
A.
Smerzi
, “
Sensitivity bounds for multiparameter quantum metrology
,”
Phys. Rev. Lett.
121
,
130503
(
2018
).
38.
M.
Gessner
,
A.
Smerzi
, and
L.
Pezzé
, “
Multiparameter squeezing for optimal quantum enhancements in sensor networks
,”
Nat. Commun.
11
,
3817
(
2020
).
39.
BCS-BEC Crossover and the Unitary Fermi Gas
, edited by
W.
Zwerger
, Springer Lecture Notes in Physics (
Springer Science & Business Media
,
2011
), Vol.
836
.
40.
H.
Kurkjian
,
Y.
Castin
, and
A.
Sinatra
, “
Phase operators and blurring time of a pair-condensed Fermi gas
,”
Phys. Rev. A
88
,
063623
(
2013
).
41.
H.
Kurkjian
,
Y.
Castin
, and
A.
Sinatra
, “
Brouillage thermique d'un gaz cohérent de fermions
,”
C. R. Phys.
17
,
789
(
2016
).
42.
J.
Estève
,
C.
Gross
,
A.
Weller
,
S.
Giovanazzi
, and
M. K.
Oberthaler
, “
Squeezing and entanglement in a Bose–Einstein condensate
,”
Nature
455
,
1216
(
2008
).
43.
T.
Berrada
,
S.
van Frank
,
R.
Bücker
,
T.
Schumm
,
J.-F.
Schaff
, and
J.
Schmiedmayer
, “
Integrated Mach–Zehnder interferometer for Bose–Einstein condensates
,”
Nat. Commun.
4
,
2077
(
2013
).
44.
R.
Lopes
,
C.
Eigen
,
N.
Navon
,
D.
Clément
,
R. P.
Smith
, and
Z.
Hadzibabic
, “
Quantum depletion of a homogeneous Bose–Einstein condensate
,”
Phys. Rev. Lett.
119
,
190404
(
2017
).
45.
macQsimal H2020-EU project, see https://www.macqsimal.eu/ for “
Miniature Atomic vapor-Cells Quantum devices for Sensing and Metrology Application
.”
46.
J.
Kong
,
R.
Jiménez-Martínez
,
C.
Troullinou
,
V. G.
Lucivero
,
G.
Tóth
, and
M. W.
Mitchell
, “
Measurement-induced, spatially-extended entanglement in a hot, strongly-interacting atomic system
,”
Nat. Commun.
11
,
2415
(
2020
).
47.
T. R.
Gentile
,
P. J.
Nacher
,
B.
Saam
, and
T. G.
Walker
, “
Optically polarized 3 He
,”
Rev. Mod. Phys.
89
,
045004
(
2017
).
48.
A.
Dantan
,
G.
Reinaudi
,
A.
Sinatra
,
F.
Laloë
,
E.
Giacobino
, and
M.
Pinard
, “
Long-lived quantum memory with nuclear atomic spins
,”
Phys. Rev. Lett.
95
,
123002
(
2005
).
49.
G.
Reinaudi
,
A.
Sinatra
,
A.
Dantan
, and
M.
Pinard
, “
Squeezing and entangling nuclear spins in helium 3
,”
J. Mod. Opt.
54
,
675
(
2007
).
50.
G.
Vasilakis
,
H.
Shen
,
K.
Jensen
,
M.
Balabas
,
D.
Salart
,
B.
Chen
, and
E.
Polzik
, “
Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement
,”
Nat. Phys.
11
,
389
(
2015
).
51.
O.
Katz
,
R.
Shaham
,
E. S.
Polzik
, and
O.
Firstenberg
, “
Long-lived entanglement generation of nuclear spins using coherent light
,”
Phys. Rev. Lett.
124
,
043602
(
2020
).
52.
A.
Serafin
,
M.
Fadel
,
P.
Treutlein
, and
A.
Sinatra
, “
Nuclear spin squeezing in helium-3 by continuous quantum nondemolition measurement
,”
Phys. Rev. Lett.
127
,
013601
(
2021
).
53.
A.
Serafin
,
Y.
Castin
,
M.
Fadel
,
P.
Treutlein
, and
A.
Sinatra
, “
Etude théorique de la compression de spin nucléaire par mesure quantique non destructive en continu
,”
C. R. Phys.
22
,
1
35
(
2021
).
54.
T. W.
Kornack
and
M. V.
Romalis
, “
Dynamics of two overlapping spin ensembles interacting by spin exchange
,”
Phys. Rev. Lett.
89
,
253002
(
2002
).
55.
R.
Shaham
,
O.
Katz
, and
O.
Firstenberg
, “
Strong coupling of alkali spins to noble-gas spins with hour-long coherence time
,” arXiv:2102.02797 (
2021
).
56.
J.
Dupont-Roc
,
M.
Leduc
, and
F.
Laloë
, “
Contribution à l'étude du pompage optique par échange de métastabilité dans 3He.-Première Partie
,”
J. Phys.
34
,
961
(
1973
).
57.
M.
Tse
et al, “
Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy
,”
Phys. Rev. Lett.
123
,
231107
(
2019
);
[PubMed]
F.
Acernese
et al, “
Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light
,”
Phys. Rev. Lett.
123
,
231108
(
2019
).
[PubMed]
You do not currently have access to this content.