Liquid dye lasers have long been considered as ideal tunable laser sources in the visible range but are bulky, expensive, and require a complex system for dye circulation. Here, we present a system that relies on a low-cost blue laser diode as the pump source and a sealed dye cell with no flowing circuitry, resulting in a device that combines the convenience and size of a solid-state device with the stability of a liquid organic laser. A very high photo-stability is obtained (up to 1.2 × 109 pulses or 12 days at 1 kHz), which is five orders of magnitude higher than a solid-state dye laser operated in similar conditions. The number of pulses obtainable at low repetition rates is found to be limited by molecular self-diffusion and, hence, related to the total cuvette volume. In contrast, the repetition rate is limited to a few kHz, which suggests that thermal effects play a bigger role than triplet population effects. Thermal effects participate in the suppression of lasing through the buildup of a strong negative thermal lens; correcting the non-aberrant part of this thermal lens by resonator design enables the repetition rate to be pushed up to 14 kHz with possible further optimization. This work shows a route for building off-the-shelf, compact, low-cost, and convenient tunable pulsed lasers in the visible range that have superior stability over organic solid-state lasers.

1.
M.
Behringer
and
H.
König
,
Photonics Views
17
,
60
(
2020
).
2.
C. G.
Durfee
,
T.
Storz
,
J.
Garlick
,
S.
Hill
,
J. A.
Squier
,
M.
Kirchner
,
G.
Taft
,
K.
Shea
,
H.
Kapteyn
,
M.
Murnane
, and
S.
Backus
,
CLEO: Sci. Innov.
20
,
1223
(
2012
).
3.
A.
Hamja
,
S.
Chénais
, and
S.
Forget
,
J. Appl. Phys.
128
,
229902
(
2020
).
4.
D.
Stefańska
,
M.
Suski
,
A.
Zygmunt
,
J.
Stachera
, and
B.
Furmann
,
Opt. Laser Technol.
120
,
105673
(
2019
).
5.
O.
Burdukova
,
V.
Petukhov
, and
M.
Semenov
,
Appl. Phys. B.
124
,
188
(
2018
).
6.
D.
Stefanska
,
M.
Suski
, and
B.
Furmann
,
Laser Phys. Lett.
14
,
045701
(
2017
).
7.
O.
Burdukova
,
M.
Gorbunkov
,
V.
Petukhov
, and
M.
Semenov
,
Appl. Phys. B.
123
,
84
(
2017
).
8.
O. A.
Burdukova
,
M. V.
Gorbunkov
,
V. A.
Petukhov
, and
M. A.
Semenov
,
Laser Phys. Lett.
13
,
105004
(
2016
).
9.
J. H.
Gurian
,
H.
Maeda
, and
T. F.
Gallagher
,
Rev. Sci. Instrum.
81
,
19
(
2010
).
10.
S. J.
Lee
,
M. J.
Choi
,
Z.
Zheng
,
W. S.
Chung
,
Y. K.
Kim
, and
S. B.
Cho
,
J. Cosmet. Laser Ther.
15
,
150
(
2013
).
11.
F.
Lahoz
,
I. R.
Martín
,
J.
Gil-Rostra
,
M.
Oliva-Ramirez
,
F.
Yubero
, and
A. R.
Gonzalez-Elipe
,
Opt. Express
24
,
14383
(
2016
).
12.
M.
Karl
,
G. L.
Whitworth
,
M.
Schubert
,
C. P.
Dietrich
,
I. D. W.
Samuel
,
G. A.
Turnbull
, and
M. C.
Gather
,
Appl. Phys. Lett.
108
,
261101
(
2016
).
13.
W.
Song
,
A. E.
Vasdekis
,
Z.
Li
, and
D.
Psaltis
,
Appl. Phys. Lett.
94
,
051117
(
2009
).
14.
V. T. N.
Mai
,
A.
Shukla
,
A. M. C.
Senevirathne
,
I.
Allison
,
H.
Lim
,
R. J.
Lepage
,
S. K. M.
McGregor
,
M.
Wood
,
T.
Matsushima
,
E. G.
Moore
,
E. H.
Krenske
,
A. S. D.
Sandanayaka
,
C.
Adachi
,
E. B.
Namdas
, and
S. C.
Lo
,
Adv. Opt. Mater.
8
,
2001234
(
2020
).
15.
A. S. D.
Sandanayaka
 et al. 
Appl. Phys. Express
12
,
061010
(
2019
).
16.
A. S. D.
Sandanayaka
,
L.
Zhao
,
D.
Pitrat
,
J. C.
Mulatier
,
T.
Matsushima
,
C.
Andraud
,
J. H.
Kim
,
J. C.
Ribierre
, and
C.
Adachi
,
Appl. Phys. Lett.
108
,
223301
(
2016
).
17.
T.
Matsushima
,
S.
Yoshida
,
K.
Inada
,
Y.
Esaki
,
T.
Fukunaga
,
H.
Mieno
,
N.
Nakamura
,
F.
Bencheikh
,
M. R.
Leyden
,
R.
Komatsu
,
C.
Qin
,
A. S. D.
Sandanayaka
, and
C.
Adachi
,
Adv. Funct. Mater.
29
,
1807148
(
2019
).
18.
H.
Sakata
and
H.
Takeuchi
,
Appl. Phys. Lett.
92
,
113310
(
2008
).
19.
C.
Foucher
,
B.
Guilhabert
,
A. L.
Kanibolotsky
,
P. J.
Skabara
,
N.
Laurand
, and
M. D.
Dawson
,
Opt. Mater. Express
3
,
584
(
2013
).
20.
M.
Rodriguez
,
A.
Costela
,
I.
Garcia-Moreno
,
F.
Florido
,
J. M.
Figuera
, and
R.
Sastre
,
Meas. Sci. Technol.
6
,
971
(
1995
).
21.
V. M.
Katarkevich
,
A. N.
Rubinov
,
T. S.
Efendiev
,
S. S.
Anufrik
, and
M. F.
Koldunov
,
Appl. Opt.
54
,
7962
(
2015
).
22.
A.
Costela
,
I.
García Moreno
,
C.
Gómez
,
O.
García
,
R.
Sastre
,
A.
Roig
, and
E.
Molins
,
J. Phys. Chem. B
109
,
4475
(
2005
).
23.
K. M.
Abedin
,
M.
Álvarez
,
A.
Costela
,
I.
García-Moreno
,
O.
García
,
R.
Sastre
,
D. W.
Coutts
, and
C. E.
Webb
,
Opt. Commun.
218
,
359
(
2003
).
24.
A.
Costela
,
I.
García-Moreno
,
R.
Sastre
,
D. W.
Coutts
, and
C. E.
Webb
,
Appl. Phys. Lett.
79
,
452
(
2001
).
25.
S.
Forget
and
S.
Chénais
,
Organic Solid-State Lasers
(
Springer
,
Berlin/Heidelberg
,
2013
).
26.
A. S. D.
Sandanayaka
,
T.
Matsushima
,
F.
Bencheikh
,
K.
Yoshida
,
M.
Inoue
,
T.
Fujihara
,
K.
Goushi
,
J. C.
Ribierre
, and
C.
Adachi
,
Sci. Adv.
3
,
e1701183
(
2017
).
27.
Y.
Oyama
,
M.
Mamada
,
A.
Shukla
,
E. G.
Moore
,
S. C.
Lo
,
E. B.
Namdas
, and
C.
Adachi
,
ACS Mater. Lett.
2
,
161
(
2020
).
28.
E.
McKenna
,
J.
Xue
,
R.
Fan
,
L.
Bintz
,
R.
Dinu
, and
A.
Mickelson
,
Appl. Opt.
44
,
3063
(
2005
).
29.
M.
Meyer
,
J. C.
Mialocq
, and
B.
Perly
,
J. Phys. Chem.
94
,
98
(
1990
).
30.
K.
Yagi
,
S.
Shibata
,
T.
Yano
,
A.
Yasumori
,
M.
Yamane
, and
B.
Dunn
,
J. Sol-Gel Sci. Technol.
4
,
67
(
1995
).
31.
Z.
Zhao
,
O.
Mhibik
,
M.
Nafa
,
S.
Chénais
, and
S.
Forget
,
Appl. Phys. Lett.
106
,
051112
(
2015
).
32.
H.
Rabbani-Haghighi
,
S.
Forget
,
S.
Chénais
, and
A.
Siove
,
Opt. Lett.
35
,
1968
(
2010
).
33.
W.
Hu
,
H.
Ye
,
C.
Li
,
Z.
Jiang
, and
F.
Zhou
,
Appl. Opt.
36
,
579
(
1997
).
34.
S.
Chénais
,
F.
Druon
,
S.
Forget
,
F.
Balembois
, and
P.
Georges
,
Prog. Quantum Electron.
30
,
89
(
2006
).
35.
W.
Xie
,
S. C.
Tam
,
Y. L.
Lam
, and
Y.
Kwon
,
Opt. Commun.
189
,
337
(
2001
).
36.
H.
Su
,
Y.
Zhang
,
Y.
Zhao
,
K.
Ma
, and
J.
Wang
,
Opt. Fiber Technol.
51
,
1
(
2019
).

Supplementary Material

You do not currently have access to this content.