In this Letter, a method is proposed to increase the power output of piezoelectric energy harvesting via gradient auxetic structures. This method is validated through a gradient auxetic piezoelectric energy harvester, which combines a cantilever beam and a gradient auxetic structure. Compared with the normal uniform auxetic structure, the gradient auxetic structure can contribute to a more uniform strain distribution of the piezoelectric cantilever beam; thus, the proposed gradient auxetic energy harvester can produce higher power than the uniform auxetic energy harvester without increasing the stress concentration at the same time. Finite element simulation is performed to analyze the characteristics of the gradient auxetic energy harvester. From the experimental results, under the base excitation of 1 m/s2, the power density of the gradient auxetic energy harvester is increased by 356% and 55%, respectively, compared with the conventional plain energy harvester without auxetic structure and the uniform auxetic energy harvester.

1.
S.
Fang
,
S.
Zhou
,
D.
Yurchenko
,
T.
Yang
, and
W.-H.
Liao
, “
Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review
,”
Mech. Syst. Signal Process.
166
,
108419
(
2022
).
2.
Q.
Wang
,
H.
Zou
,
L.
Zhao
,
M.
Li
,
K.
Wei
,
L.
Huang
, and
W.
Zhang
, “
A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting
,”
Appl. Phys. Lett.
117
,
043902
(
2020
).
3.
D.
Huang
,
J.
Han
,
S.
Zhou
,
Q.
Han
,
G.
Yang
, and
D.
Yurchenko
, “
Stochastic and deterministic responses of an asymmetric quad-stable energy harvester
,”
Mech. Syst. Signal Process.
168
,
108672
(
2022
).
4.
U.
Erturun
,
A.
Eisape
,
S.
Kang
, and
J.
West
, “
Energy harvester using piezoelectric nanogenerator and electrostatic generator
,”
Appl. Phys. Lett.
118
,
063902
(
2021
).
5.
Y.
Zhang
,
A.
Luo
,
Y.
Wang
,
X.
Dai
,
Y.
Lu
, and
F.
Wang
, “
Rotational electromagnetic energy harvester for human motion application at low frequency
,”
Appl. Phys. Lett.
116
,
053902
(
2020
).
6.
J.
Wang
,
D.
Yurchenko
,
G.
Hu
,
L.
Zhao
,
L.
Tang
, and
Y.
Yang
, “
Perspectives in flow-induced vibration energy harvesting
,”
Appl. Phys. Lett.
119
,
100502
(
2021
).
7.
G.
Hu
,
C.
Lan
,
L.
Tang
,
B.
Zhou
, and
Y.
Yang
, “
Dynamics and power limit analysis of a galloping piezoelectric energy harvester under forced excitation
,”
Mech. Syst. Signal Process.
168
,
108724
(
2022
).
8.
K.
Fan
,
J.
Liu
,
D.
Wei
,
D.
Zhang
,
Y.
Zhang
, and
K.
Tao
, “
A cantilever-plucked and vibration-driven rotational energy harvester with high electric outputs
,”
Energy Convers. Manage.
244
,
114504
(
2021
).
9.
S.
Fang
,
S.
Wang
,
S.
Zhou
,
Z.
Yang
, and
W.-H.
Liao
, “
Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting
,”
J. Sound Vib.
488
,
115643
(
2020
).
10.
G.
Hu
,
C.
Lan
,
L.
Tang
, and
Y.
Yang
, “
Local resonator stimulated polarization transition in metamaterials and the formation of topological interface states
,”
Mech. Syst. Signal Process.
165
,
108388
(
2022
).
11.
S.
Roundy
,
E. S.
Leland
,
J.
Baker
,
E.
Carleton
,
E.
Reilly
,
E.
Lai
,
B.
Otis
,
J. M.
Rabaey
,
P. K.
Wright
, and
V.
Sundararajan
, “
Improving power output for vibration-based energy scavengers
,”
IEEE Pervasive Comput.
4
,
28
36
(
2005
).
12.
J.
Zhang
,
X.
Zhang
,
C.
Shu
,
Z.
Fang
, and
Y.
Ning
, “
Modeling and nonlinear analysis of stepped beam energy harvesting from galloping vibrations
,”
J. Sound Vib.
479
,
115354
(
2020
).
13.
S.
Ben Ayed
,
A.
Abdelkefi
,
F.
Najar
, and
M. R.
Hajj
, “
Design and performance of variable-shaped piezoelectric energy harvesters
,”
J. Intell. Mater. Syst. Struct.
25
,
174
186
(
2014
).
14.
Z.
Yang
,
Y. Q.
Wang
,
L.
Zuo
, and
J.
Zu
, “
Introducing arc-shaped piezoelectric elements into energy harvesters
,”
Energy Convers. Manage.
148
,
260
266
(
2017
).
15.
A.
Erturk
,
J. M.
Renno
, and
D. J.
Inman
, “
Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs
,”
J. Intell. Mater. Syst. Struct.
20
,
529
544
(
2009
).
16.
K.
Chen
,
F.
Gao
,
Z.
Liu
, and
W.-H.
Liao
, “
A nonlinear M-shaped tri-directional piezoelectric energy harvester
,”
Smart Mater. Struct.
30
,
045017
(
2021
).
17.
V.
Kulkarni
,
R.
Ben-Mrad
,
S. E.
Prasad
, and
S.
Nemana
, “
A shear-mode energy harvesting device based on torsional stresses
,”
IEEE/ASME Trans. Mechatron.
19
,
801
807
(
2014
).
18.
X.
Gao
,
C.
Qiu
,
G.
Li
,
M.
Ma
,
S.
Yang
,
Z.
Xu
, and
F.
Li
, “
High output power density of a shear-mode piezoelectric energy harvester based on Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals
,”
Appl. Energy
271
,
115193
(
2020
).
19.
P.
Budarapu
,
S.
Sastry Y B
, and
R.
Natarajan
, “
Design concepts of an aircraft wing: Composite and morphing airfoil with auxetic structures
,”
Front. Struct. Civil Eng.
10
,
394
408
(
2016
).
20.
M. N.
Ali
and
I. U.
Rehman
, “
An auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis
,”
J. Mater. Sci.: Mater. Med.
22
,
2573
2581
(
2011
).
21.
J.
Ko
,
S.
Bhullar
,
Y.
Cho
,
P. C.
Lee
, and
M. B.-G.
Jun
, “
Design and fabrication of auxetic stretchable force sensor for hand rehabilitation
,”
Smart Mater. Struct.
24
,
075027
(
2015
).
22.
Q.
Gao
,
W.-H.
Liao
, and
L.
Wang
, “
On the low-velocity impact responses of auxetic double arrowed honeycomb
,”
Aerosp. Sci. Technol.
98
,
105698
(
2020
).
23.
Q.
Li
,
Y.
Kuang
, and
M.
Zhu
, “
Auxetic piezoelectric energy harvesters for increased electric power output
,”
AIP Adv.
7
,
015104
(
2017
).
24.
P.
Eghbali
,
D.
Younesian
, and
S.
Farhangdoust
, “
Enhancement of piezoelectric vibration energy harvesting with auxetic boosters
,”
Int. J. Energy Res.
44
,
1179
1190
(
2020
).
25.
W. J. G.
Ferguson
,
Y.
Kuang
,
K. E.
Evans
,
C. W.
Smith
, and
M.
Zhu
, “
Auxetic structure for increased power output of strain vibration energy harvester
,”
Sens. Actuators, A
282
,
90
96
(
2018
).
26.
K.
Chen
,
Q.
Gao
,
S.
Fang
,
D.
Zou
,
Z.
Yang
, and
W.-H.
Liao
, “
An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth
,”
Appl. Energy
298
,
117274
(
2021
).
27.
S.
Farhangdoust
,
G.
Georgeson
,
J.-B.
Ihn
, and
F.-K.
Chang
, “
Kirigami auxetic structure for high efficiency power harvesting in self-powered and wireless structural health monitoring systems
,”
Smart Mater. Struct.
30
,
015037
(
2021
).
28.
A.
Erturk
and
D. J.
Inman
,
Piezoelectric Energy Harvesting
(
John Wiley & Sons
,
2011
).
29.
S.
Kon
and
R.
Horowitz
, “
A high-resolution MEMS piezoelectric strain sensor for structural vibration detection
,”
IEEE Sens. J.
8
,
2027
2035
(
2008
).
30.
L. Q.
Machado
,
D.
Yurchenko
,
J.
Wang
,
G.
Clementi
,
S.
Margueron
, and
A.
Bartasyte
, “
Multi-dimensional constrained energy optimization of a piezoelectric harvester for E-gadgets
,”
iScience
24
,
102749
(
2021
).
You do not currently have access to this content.