We report on terahertz (THz) electron paramagnetic resonance generalized spectroscopic ellipsometry (THz-EPR-GSE). Measurements of field and frequency dependencies of magnetic response due to spin transitions associated with nitrogen defects in 4H-SiC are shown as an example. THz-EPR-GSE dispenses with the need of a cavity, permits independently scanning field and frequency parameters, and does not require field or frequency modulation. We investigate spin transitions of hexagonal (h) and cubic (k) coordinated nitrogen including coupling with its nuclear spin (I = 1), and we propose a model approach for the magnetic susceptibility to account for the spin transitions. From the THz-EPR-GSE measurements, we can fully determine polarization properties of the spin transitions, and we can obtain the k coordinated nitrogen g and hyperfine splitting parameters using magnetic field and frequency dependent Lorentzian oscillator line shape functions. Magnetic-field line broadening presently obscures access to h parameters. We show that measurements of THz-EPR-GSE at positive and negative fields differ fundamentally and hence provide additional information. We propose frequency-scanning THz-EPR-GSE as a versatile method to study properties of spins in solid state materials.

1.
C.
Poole
,
Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques
(
Wiley
,
New York
,
1983
).
2.
S.
Rast
,
A.
Borel
,
L.
Helm
,
E.
Belorizky
,
P. H.
Fries
, and
A. E.
Merbach
,
J. Am. Chem. Soc.
123
,
2637
(
2001
).
3.
P.
Neugebauer
,
D.
Bloos
,
R.
Marx
,
P.
Lutz
,
M.
Kern
,
D.
Aguilà
,
J.
Vaverka
,
O.
Laguta
,
C.
Dietrich
,
R.
Clérac
, and
J.
van Slageren
,
Phys. Chem. Chem. Phys.
20
,
15528
(
2018
).
4.
O.
Laguta
,
M.
Tucek
,
J.
van Slageren
, and
P.
Neugebauer
,
J. Magn. Res.
296
,
138
(
2018
).
5.
A. L.
Barra
,
A.
Caneschi
,
D.
Gatteschi
, and
R.
Sessoli
,
J. Am. Chem. Soc.
117
,
8855
(
1995
).
6.
A. K.
Hassan
,
L. A.
Pardi
,
J.
Krzystek
,
A.
Sienkiewicz
,
P.
Goy
,
M.
Rohrer
, and
L. C.
Brunel
,
J. Magn. Res.
142
,
300
(
2000
).
7.
F. F.
Murzakhanov
,
B. V.
Yavkin
,
G. V.
Mamin
,
S. B.
Orlinskii
,
H. J.
von Bardeleben
,
T.
Biktagirov
,
U.
Gerstmann
, and
V. A.
Soltamov
,
Phys. Rev. B
103
,
245203
(
2021
).
8.
K.
Szász
,
X. T.
Trinh
,
N. T.
Son
,
E.
Janzén
, and
A.
Gali
,
J. Appl. Phys.
115
,
073705
(
2014
).
9.
N. T.
Son
,
J.
Isoya
,
T.
Umeda
,
I. G.
Ivanov
,
A.
Henry
,
T.
Ohshima
, and
E.
Janzén
,
Appl. Magn. Res.
39
,
49
85
(
2010
).
10.
M. E.
Zvanut
,
S.
Paudel
,
E. R.
Glaser
,
M.
Iwinska
,
T.
Sochacki
, and
M.
Bockowski
,
J. Electron. Mater.
48
,
2226
2232
(
2019
).
11.
U. R.
Sunay
,
M. E.
Zvanut
,
J.
Marbey
,
S.
Hill
,
J. H.
Leach
, and
K.
Udwary
,
J. Phys: Condens. Matter
31
,
345702
(
2019
).
12.
B. E.
Kananen
,
L. E.
Halliburton
,
E. M.
Scherrer
,
K. T.
Stevens
,
G. K.
Foundos
,
K. B.
Chang
, and
N. C.
Giles
,
Appl. Phys. Lett.
111
,
072102
(
2017
).
13.
H. J.
von Bardeleben
,
S.
Zhou
,
U.
Gerstmann
,
D.
Skachkov
,
W. R. L.
Lambrecht
,
Q. D.
Ho
, and
P.
Deák
,
APL Mater.
7
,
022521
(
2019
).
14.
N. T.
Son
,
K.
Goto
,
K.
Nomura
,
Q. T.
Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
M.
Higashiwaki
,
A.
Koukitu
,
S.
Yamakoshi
,
B.
Monemar
, and
E.
Janzén
,
J. Appl. Phys.
120
,
235703
(
2016
).
15.
C. A.
Lenyk
,
T. D.
Gustafson
,
S. A.
Basun
,
L. E.
Halliburton
, and
N. C.
Giles
,
Appl. Phys. Lett.
116
,
142101
(
2020
).
16.
C. A.
Lenyk
,
T. D.
Gustafson
,
L. E.
Halliburton
, and
N. C.
Giles
,
J. Appl. Phys.
126
,
245701
(
2019
).
17.
J. E.
Stehr
,
D. M.
Hofmann
,
J.
Schörmann
,
M.
Becker
,
W. M.
Chen
, and
I. A.
Buyanova
,
Appl. Phys. Lett.
115
,
242101
(
2019
).
18.
C. A.
Lenyk
,
N. C.
Giles
,
E. M.
Scherrer
,
B. E.
Kananen
,
L. E.
Halliburton
,
K. T.
Stevens
,
G. K.
Foundos
,
J. D.
Blevins
,
D. L.
Dorsey
, and
S.
Mou
,
J. Appl. Phys.
125
,
045703
(
2019
).
19.
N. T.
Son
,
Q. D.
Ho
,
K.
Goto
,
H.
Abe
,
T.
Ohshima
,
B.
Monemar
,
Y.
Kumagai
,
T.
Frauenheim
, and
P.
Deák
,
Appl. Phys. Lett.
117
,
032101
(
2020
).
20.
C.
Neil
,
B.
Steven
,
B.
Joe
,
M.
Ziad
,
T.
Andrew
,
V.
Roman
,
W.
David
, and
W.
Richard
, in
14th Cryogenics IIR International Conference (Cryogenics 2017)
, Dresden, Germany, 15–19 May
2017
, pp.
114
119
.
21.
J. A.
Weil
and
J. R.
Bolton
,
Electron Paramagnetic Resonance Elementary Theory and Practical Applications
(
John Wiley and Sons
,
Hobokken, NJ
,
2007
).
22.
K.
Savitsky
and
A.
Möbius
,
Photosynth. Res.
102
,
311
333
(
2009
).
23.
D.
Bloos
,
J.
Kunc
,
L.
Kaeswurm
,
R. L.
Myers-Ward
,
K.
Daniels
,
M.
DeJarld
,
A.
Nath
,
J.
van Slageren
,
D. K.
Gaskill
, and
P.
Neugebauer
,
2D Mater.
6
,
035028
(
2019
).
24.
E.
Ohmichi
,
T.
Fujimoto
,
K.
Minato
, and
H.
Ohta
,
Appl. Phys. Lett.
116
,
051101
(
2020
).
25.
E.
Ohmichi
,
Y.
Shoji
,
H.
Takahashi
, and
H.
Ohta
,
Appl. Phys. Lett.
119
,
162404
(
2021
).
26.
K.
Kozuki
,
T.
Nagashima
, and
M.
Hangyo
,
Opt. Express
19
,
24950
(
2011
).
27.
J.
Lu
,
I. O.
Ozel
,
C. A.
Belvin
,
X.
Li
,
G.
Skorupskii
,
L.
Sun
,
B. K.
Ofori-Okai
,
M.
Dincă
,
N.
Gedik
, and
K. A.
Nelson
,
Chem. Sci.
8
,
7312
(
2017
).
28.
A.
Sojka
,
M.
Šedivý
,
O.
Laguta
,
A.
Marko
,
V. T.
Santana
, and
P.
Neugebauer
,
Electron Paramagnetic Resonance
(
The Royal Society of Chemistry
,
2021
), Vol.
27
, pp.
214
252
.
29.
H.
Fujiwara
,
Spectroscopic Ellipsometry
(
John Wiley & Sons
,
New York
,
2007
).
30.
M.
Schubert
,
B.
Rheinländer
,
J. A.
Woollam
,
B.
Johs
, and
C. M.
Herzinger
,
J. Opt. Soc. Am. A
13
,
875
(
1996
).
31.
32.
H.
Mueller
, “
Memorandum on the polarization optics of the photoelastic shutter
,”
Report No. 2 of the OSRD project OEMsr-576
(
Massachusets Institute of Technology
,
1943
).
33.
S.
Visnovsky
,
R.
Lopusnik
,
M.
Bauer
,
J.
Bok
,
J.
Fassbender
, and
B.
Hillebrands
,
Opt. Exp.
9
,
121
(
2001
).
34.
K.
Postava
,
D.
Hrabovsky
,
J.
Pistora
,
A.
Fert
,
S.
Visnovsky
, and
T.
Yamaguchi
,
J. Appl. Phys.
91
,
7293
(
2002
).
35.
M.
Schubert
,
T.
Hofmann
, and
C.
Herzinger
,
J. Opt. Soc. Am. A
20
,
347
(
2003
).
36.
M.
Schubert
,
P.
Kühne
,
V.
Darakchieva
, and
T.
Hofmann
,
J. Opt. Soc. Am. A
33
,
1553
(
2016
).
38.
N. T.
Son
,
E.
Janzén
,
J.
Isoya
, and
S.
Yamasaki
,
Phys. Rev. B
70
,
193207
(
2004
).
39.
This derivation is analogous to the consideration for magneto-optic dielectric anisotropy due to, for example, Landau level transitions in two-dimensional charge carrier systems discussed in detail in Ref. 36.
40.
N.
Armakavicius
,
C.
Bouhafs
,
V.
Stanishev
,
P.
Kühne
,
R.
Yakimova
,
S.
Knight
,
T.
Hofmann
,
M.
Schubert
, and
V.
Darakchieva
,
Appl. Surf. Sci.
421
,
357
(
2017
).
41.
S.
Knight
,
S.
Schöche
,
P.
Kühne
,
T.
Hofmann
,
V.
Darakchieva
, and
M.
Schubert
,
Rev. Sci. Instrum.
91
,
083903
(
2020
).
42.
M.
Naftaly
,
J. F.
Molloy
,
B.
Magnusson
,
Y. M.
Andreev
, and
G. V.
Lanskii
,
Opt. Express
24
,
2590
(
2016
).
43.
M.
Schubert
,
Phys. Rev. B
53
,
4265
(
1996
).
44.
P.
Kuhne
,
N.
Armakavicius
,
V.
Stanishev
,
C. M.
Herzinger
,
M.
Schubert
, and
V.
Darakchieva
,
IEEE Trans. Terahertz Sci. Technol.
8
,
257
(
2018
).
45.
J.
Krzystek
,
A.
Sienkiewicz
,
L.
Pardi
, and
L.
Brunel
,
J. Magn. Res.
125
,
207
(
1997
).
46.
P.
Kühne
,
C. M.
Herzinger
,
M.
Schubert
,
J. A.
Woollam
, and
T.
Hofmann
,
Rev. Sci. Instrum.
85
,
071301
(
2014
).
47.
U.
Gerstmann
,
E.
Rauls
,
S.
Greulich-Weber
,
E. N.
Kalabukhova
,
D.
Savchenko
,
A.
Pöppl
, and
F.
Mauri
,
Silicon Carbide and Related Materials 2006
, Materials Science Forum Vol.
556
(
Trans Tech Publications Ltd
,
2007
), pp.
391
394
.
48.
P.
Gopalan
,
S.
Knight
,
A.
Chanana
,
M.
Stokey
,
P.
Ranga
,
M. A.
Scarpulla
,
S.
Krishnamoorthy
,
V.
Darakchieva
,
Z.
Galazka
,
K.
Irmscher
,
A.
Fiedler
,
S.
Blair
,
M.
Schubert
, and
B.
Sensale-Rodriguez
,
Appl. Phys. Lett.
117
,
252103
(
2020
).

Supplementary Material

You do not currently have access to this content.