Generation of terahertz radiation by an oscillating discharge, excited by short laser pulses, may be controlled by geometry of the irradiated target. In this work, an annular target with a thin slit is considered as an efficient emitter of secondary radiation when driven by a short intense laser pulse. Under irradiation, a slit works as a diode, which is quickly filled by dense plasmas, closing the circuit for a traveling discharge pulse. Such a diode defines the discharge pulse propagation direction in a closed contour, enabling its multiple passes along the coil. The obtained oscillating charge efficiently generates multi-period quasi-monochromatic terahertz waves with a maximum along the coil axis and controllable characteristics.
References
1.
S. S.
Dhillon
, M. S.
Vitiello
, E. H.
Linfield
, A. G.
Davies
, M. C.
Hoffmann
, J.
Booske
, C.
Paoloni
, M.
Gensch
, P.
Weightman
, G. P.
Williams
, E.
Castro-Camus
, D. R. S.
Cumming
, F.
Simoens
, I.
Escorcia-Carranza
, J.
Grant
, S.
Lucyszyn
, M.
Kuwata-Gonokami
, K.
Konishi
, M.
Koch
, C. A.
Schmuttenmaer
, T. L.
Cocker
, R.
Huber
, A. G.
Markelz
, Z. D.
Taylor
, V. P.
Wallace
, J. A.
Zeitler
, J.
Sibik
, T. M.
Korter
, B.
Ellison
, S.
Rea
, P.
Goldsmith
, K. B.
Cooper
, R.
Appleby
, D.
Pardo
, P. G.
Huggard
, V.
Krozer
, H.
Shams
, M.
Fice
, C.
Renaud
, A.
Seeds
, A.
Stöhr
, M.
Naftaly
, N.
Ridler
, R.
Clarke
, J. E.
Cunningham
, and M. B.
Johnston
, “The 2017 terahertz science and technology roadmap
,” J. Phys. D
50
, 043001
(2017
).2.
Q.
Sun
, Y.
He
, K.
Lui
, S.
Fan
, E.
Parrott
, and E.
Pickwell-MacPherson
, “Recent advances in terahertz technology for biomedical applications
,” Quant. Imaging Med. Surg.
7
, 345
–355
(2017
).3.
A. G.
Davies
, A. D.
Burnett
, W.
Fan
, E. H.
Linfield
, and J. E.
Cunningham
, “Terahertz spectroscopy of explosives and drugs
,” Mater. Today
11
, 18
–26
(2008
).4.
L.
Yang
, T.
Guo
, X.
Zhang
, S.
Cao
, and X.
Ding
, “Toxic chemical compound detection by terahertz spectroscopy: A review
,” Rev. Anal. Chem.
37
, 21
(2018
).5.
J.
Ma
, R.
Shrestha
, J.
Adelberg
, C. Y.
Yeh
, Z.
Hossain
, E.
Knightly
, J. M.
Jornet
, and D. M.
Mittleman
, “Security and eavesdropping in terahertz wireless links
,” Nature
563
, 89
–93
(2018
).6.
K.
Huang
and Z.
Wang
, “Terahertz terabit wireless communication
,” IEEE Microwave Mag.
12
, 108
–116
(2011
).7.
V.
Balos
, G.
Bierhance
, M.
Wolf
, and M.
Sajadi
, “Terahertz-magnetic-field induced ultrafast faraday rotation of molecular liquids
,” Phys. Rev. Lett.
124
, 093201
(2020
).8.
T.
Kampfrath
, A.
Sell
, G.
Klatt
, A.
Pashkin
, S.
Mährlein
, T.
Dekorsy
, M.
Wolf
, M.
Fiebig
, A.
Leitenstorfer
, and R.
Huber
, “Coherent terahertz control of antiferromagnetic spin waves
,” Nat. Photonics
5
, 31
–34
(2011
).9.
M. C.
Downer
, R.
Zgadzaj
, A.
Debus
, U.
Schramm
, and M. C.
Kaluza
, “Diagnostics for plasma-based electron accelerators
,” Rev. Mod. Phys.
90
, 035002
(2018
).10.
D.
Zhang
, A.
Fallahi
, M.
Hemmer
, X.
Wu
, M.
Fakhari
, Y.
Hua
, H.
Cankaya
, A.-L.
Calendron
, L. E.
Zapata
, N. H.
Matlis
, and F. X.
Kärtner
, “Segmented terahertz electron accelerator and manipulator (STEAM)
,” Nat. Photonics
12
, 336
–342
(2018
).11.
D.
Zhang
, M.
Fakhari
, H.
Cankaya
, A.-L.
Calendron
, N. H.
Matlis
, and F. X.
Kärtner
, “Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation
,” Phys. Rev. X
10
, 011067
(2020
).12.
M.
Liu
, H. Y.
Hwang
, H.
Tao
, A. C.
Strikwerda
, K.
Fan
, G. R.
Keiser
, A. J.
Sternbach
, K. G.
West
, S.
Kittiwatanakul
, J.
Lu
, S. A.
Wolf
, F. G.
Omenetto
, X.
Zhang
, K. A.
Nelson
, and R. D.
Averitt
, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial
,” Nature
487
, 345
–348
(2012
).13.
S.
Yang
, M. R.
Hashemi
, C. W.
Berry
, and M.
Jarrahi
, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes
,” IEEE Trans. Terahertz Sci. Technol.
4
, 575
–581
(2014
).14.
X.
Ropagnol
, M.
Khorasaninejad
, M.
Raeiszadeh
, S.
Safavi-Naeini
, M.
Bouvier
, C. Y.
Côté
, A.
Laramée
, M.
Reid
, M. A.
Gauthier
, and T.
Ozaki
, “Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas
,” Opt. Express
24
, 11299
–11311
(2016
).15.
A. V.
Ovchinnikov
, O. V.
Chefonov
, D. S.
Sitnikov
, I. V.
Ilina
, S. I.
Ashitkov
, and M. B.
Agranat
, “A source of THz radiation with electric field strength of more than 1 MV cm−1 on the basis of 100-Hz femtosecond Cr: Forsterite laser system
,” Quantum Electron.
48
, 554
–558
(2018
).16.
D. S.
Sitnikov
, I. V.
Ilina
, and A. A.
Pronkin
, “Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm
,” Opt. Eng.
59
, 061613
(2020
).17.
S.-W.
Huang
, E.
Granados
, W. R.
Huang
, K.-H.
Hong
, L. E.
Zapata
, and F. X.
Kärtner
, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate
,” Opt. Lett.
38
, 796
–798
(2013
).18.
C. P.
Hauri
, C.
Ruchert
, C.
Vicario
, and F.
Ardana
, “Strong-field single-cycle thz pulses generated in an organic crystal
,” Appl. Phys. Lett.
99
, 161116
(2011
).19.
A.
Gopal
, P.
Singh
, S.
Herzer
, A.
Reinhard
, A.
Schmidt
, U.
Dillner
, T.
May
, H.-G.
Meyer
, W.
Ziegler
, and G. G.
Paulus
, “Characterization of 700 μJ T rays generated during high-power laser solid interaction
,” Opt. Lett.
38
, 4705
–4707
(2013
).20.
J.
Déchard
, A.
Debayle
, X.
Davoine
, L.
Gremillet
, and L.
Bergé
, “Terahertz pulse generation in underdense relativistic plasmas: From photoionization-induced radiation to coherent transition radiation
,” Phys. Rev. Lett.
120
, 144801
(2018
).21.
G. Q.
Liao
, Y. T.
Li
, C.
Li
, L. N.
Su
, Y.
Zheng
, M.
Liu
, W. M.
Wang
, Z. D.
Hu
, W. C.
Yan
, J.
Dunn
, J.
Nilsen
, J.
Hunter
, Y.
Liu
, X.
Wang
, L. M.
Chen
, J. L.
Ma
, X.
Lu
, Z.
Jin
, R.
Kodama
, Z. M.
Sheng
, and J.
Zhang
, “Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses
,” Phys. Rev. Lett.
114
, 255001
(2015
).22.
F.
Bakhtiari
, M.
Esmaeilzadeh
, and B.
Ghafary
, “Terahertz radiation with high power and high efficiency in a magnetized plasma
,” Phys. Plasmas
24
, 073112
(2017
).23.
C.
Li
, G.-Q.
Liao
, M.-L.
Zhou
, F.
Du
, J.-L.
Ma
, Y.-T.
Li
, W.-M.
Wang
, Z.-M.
Sheng
, L.-M.
Chen
, and J.
Zhang
, “Backward terahertz radiation from intense laser-solid interactions
,” Opt. Express
24
, 4010
–4021
(2016
).24.
G.-Q.
Liao
, Y.-T.
Li
, C.
Li
, S.
Mondal
, H. A.
Hafez
, M. A.
Fareed
, T.
Ozaki
, W.-M.
Wang
, Z.-M.
Sheng
, and J.
Zhang
, “Terahertz emission from two-plasmon-decay induced transient currents in laser-solid interactions
,” Phys. Plasmas
23
, 013104
(2016
).25.
S.
Herzer
, A.
Woldegeorgis
, J.
Polz
, A.
Reinhard
, M.
Almassarani
, B.
Beleites
, F.
Ronneberger
, R.
Grosse
, G. G.
Paulus
, U.
Hübner
, T.
May
, and A.
Gopal
, “An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities
,” New J. Phys.
20
, 063019
(2018
).26.
Z.
Wu
, A. S.
Fisher
, J.
Goodfellow
, M.
Fuchs
, D.
Daranciang
, M.
Hogan
, H.
Loos
, and A.
Lindenberg
, “Intense terahertz pulses from SLAC electron beams using coherent transition radiation
,” Rev. Sci. Instrum.
84
, 022701
(2013
).27.
K.
Teramoto
, S.
Tokita
, T.
Terao
, S.
Inoue
, R.
Yasuhara
, T.
Nagashima
, S.
Kojima
, J.
Kawanaka
, K.
Mori
, M.
Hashida
, and S.
Sakabe
, “Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires
,” Appl. Phys. Lett.
113
, 051101
(2018
).28.
H. B.
Zhuo
, S. J.
Zhang
, X. H.
Li
, H. Y.
Zhou
, X. Z.
Li
, D. B.
Zou
, M. Y.
Yu
, H. C.
Wu
, Z. M.
Sheng
, and C. T.
Zhou
, “Terahertz generation from laser-driven ultrafast current propagation along a wire target
,” Phys. Rev. E
95
, 013201
(2017
).29.
K.
Nakajima
, “Novel efficient THz undulator using a laser-driven wire
,” Light Sci. Appl.
6
(5
), e17063–e17063
(2017
).30.
Y.
Tian
, J.
Liu
, Y.
Bai
, S.
Zhou
, H.
Sun
, W.
Liu
, J.
Zhao
, R.
Li
, and Z.
Xu
, “Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation
,” Nat. Photonics
11
, 242
–246
(2017
).31.
Y.
Zeng
, C.
Zhou
, L.
Song
, X.
Lu
, Z.
Li
, Y.
Ding
, Y.
Bai
, Y.
Xu
, Y.
Leng
, Y.
Tian
, J.
Liu
, R.
Li
, and Z.
Xu
, “Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets
,” Opt. Express
28
, 15258
–15267
(2020
).32.
K.
Quinn
, P. A.
Wilson
, C. A.
Cecchetti
, B.
Ramakrishna
, L.
Romagnani
, G.
Sarri
, L.
Lancia
, J.
Fuchs
, A.
Pipahl
, T.
Toncian
, O.
Willi
, R. J.
Clarke
, D.
Neely
, M.
Notley
, P.
Gallegos
, D. C.
Carroll
, M. N.
Quinn
, X. H.
Yuan
, P.
McKenna
, T. V.
Liseykina
, A.
Macchi
, and M.
Borghesi
, “Laser-driven ultrafast field propagation on solid surfaces
,” Phys. Rev. Lett.
102
, 194801
(2009
).33.
J.
Derouillat
, A.
Beck
, F.
Pérez
, T.
Vinci
, M.
Chiaramello
, A.
Grassi
, M.
Flé
, G.
Bouchard
, I.
Plotnikov
, N.
Aunai
, J.
Dargent
, C.
Riconda
, and M.
Grech
, “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation
,” Comput. Phys. Commun.
222
, 351
–373
(2018
).34.
I.
Kochetkov
, N.
Bukharskii
, M.
Ehret
, Y.
Abe
, F.
Law
, V.
Ospina
, J.
Santos
, S.
Fujioka
, G.
Schaumann
, B.
Zielbauer
, A.
Kuznetsov
, and P.
Korneev
, “Machine learning analysis of quasi-stationary magnetic fields optically-driven by short laser pulses
,” available at .35.
D. N.
Gupta
and A.
Jain
, “Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma
,” Optik
227
, 165824
(2021
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.