Generation of terahertz radiation by an oscillating discharge, excited by short laser pulses, may be controlled by geometry of the irradiated target. In this work, an annular target with a thin slit is considered as an efficient emitter of secondary radiation when driven by a short intense laser pulse. Under irradiation, a slit works as a diode, which is quickly filled by dense plasmas, closing the circuit for a traveling discharge pulse. Such a diode defines the discharge pulse propagation direction in a closed contour, enabling its multiple passes along the coil. The obtained oscillating charge efficiently generates multi-period quasi-monochromatic terahertz waves with a maximum along the coil axis and controllable characteristics.

1.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
J.
Booske
,
C.
Paoloni
,
M.
Gensch
,
P.
Weightman
,
G. P.
Williams
,
E.
Castro-Camus
,
D. R. S.
Cumming
,
F.
Simoens
,
I.
Escorcia-Carranza
,
J.
Grant
,
S.
Lucyszyn
,
M.
Kuwata-Gonokami
,
K.
Konishi
,
M.
Koch
,
C. A.
Schmuttenmaer
,
T. L.
Cocker
,
R.
Huber
,
A. G.
Markelz
,
Z. D.
Taylor
,
V. P.
Wallace
,
J. A.
Zeitler
,
J.
Sibik
,
T. M.
Korter
,
B.
Ellison
,
S.
Rea
,
P.
Goldsmith
,
K. B.
Cooper
,
R.
Appleby
,
D.
Pardo
,
P. G.
Huggard
,
V.
Krozer
,
H.
Shams
,
M.
Fice
,
C.
Renaud
,
A.
Seeds
,
A.
Stöhr
,
M.
Naftaly
,
N.
Ridler
,
R.
Clarke
,
J. E.
Cunningham
, and
M. B.
Johnston
, “
The 2017 terahertz science and technology roadmap
,”
J. Phys. D
50
,
043001
(
2017
).
2.
Q.
Sun
,
Y.
He
,
K.
Lui
,
S.
Fan
,
E.
Parrott
, and
E.
Pickwell-MacPherson
, “
Recent advances in terahertz technology for biomedical applications
,”
Quant. Imaging Med. Surg.
7
,
345
355
(
2017
).
3.
A. G.
Davies
,
A. D.
Burnett
,
W.
Fan
,
E. H.
Linfield
, and
J. E.
Cunningham
, “
Terahertz spectroscopy of explosives and drugs
,”
Mater. Today
11
,
18
26
(
2008
).
4.
L.
Yang
,
T.
Guo
,
X.
Zhang
,
S.
Cao
, and
X.
Ding
, “
Toxic chemical compound detection by terahertz spectroscopy: A review
,”
Rev. Anal. Chem.
37
,
21
(
2018
).
5.
J.
Ma
,
R.
Shrestha
,
J.
Adelberg
,
C. Y.
Yeh
,
Z.
Hossain
,
E.
Knightly
,
J. M.
Jornet
, and
D. M.
Mittleman
, “
Security and eavesdropping in terahertz wireless links
,”
Nature
563
,
89
93
(
2018
).
6.
K.
Huang
and
Z.
Wang
, “
Terahertz terabit wireless communication
,”
IEEE Microwave Mag.
12
,
108
116
(
2011
).
7.
V.
Balos
,
G.
Bierhance
,
M.
Wolf
, and
M.
Sajadi
, “
Terahertz-magnetic-field induced ultrafast faraday rotation of molecular liquids
,”
Phys. Rev. Lett.
124
,
093201
(
2020
).
8.
T.
Kampfrath
,
A.
Sell
,
G.
Klatt
,
A.
Pashkin
,
S.
Mährlein
,
T.
Dekorsy
,
M.
Wolf
,
M.
Fiebig
,
A.
Leitenstorfer
, and
R.
Huber
, “
Coherent terahertz control of antiferromagnetic spin waves
,”
Nat. Photonics
5
,
31
34
(
2011
).
9.
M. C.
Downer
,
R.
Zgadzaj
,
A.
Debus
,
U.
Schramm
, and
M. C.
Kaluza
, “
Diagnostics for plasma-based electron accelerators
,”
Rev. Mod. Phys.
90
,
035002
(
2018
).
10.
D.
Zhang
,
A.
Fallahi
,
M.
Hemmer
,
X.
Wu
,
M.
Fakhari
,
Y.
Hua
,
H.
Cankaya
,
A.-L.
Calendron
,
L. E.
Zapata
,
N. H.
Matlis
, and
F. X.
Kärtner
, “
Segmented terahertz electron accelerator and manipulator (STEAM)
,”
Nat. Photonics
12
,
336
342
(
2018
).
11.
D.
Zhang
,
M.
Fakhari
,
H.
Cankaya
,
A.-L.
Calendron
,
N. H.
Matlis
, and
F. X.
Kärtner
, “
Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation
,”
Phys. Rev. X
10
,
011067
(
2020
).
12.
M.
Liu
,
H. Y.
Hwang
,
H.
Tao
,
A. C.
Strikwerda
,
K.
Fan
,
G. R.
Keiser
,
A. J.
Sternbach
,
K. G.
West
,
S.
Kittiwatanakul
,
J.
Lu
,
S. A.
Wolf
,
F. G.
Omenetto
,
X.
Zhang
,
K. A.
Nelson
, and
R. D.
Averitt
, “
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial
,”
Nature
487
,
345
348
(
2012
).
13.
S.
Yang
,
M. R.
Hashemi
,
C. W.
Berry
, and
M.
Jarrahi
, “
7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes
,”
IEEE Trans. Terahertz Sci. Technol.
4
,
575
581
(
2014
).
14.
X.
Ropagnol
,
M.
Khorasaninejad
,
M.
Raeiszadeh
,
S.
Safavi-Naeini
,
M.
Bouvier
,
C. Y.
Côté
,
A.
Laramée
,
M.
Reid
,
M. A.
Gauthier
, and
T.
Ozaki
, “
Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas
,”
Opt. Express
24
,
11299
11311
(
2016
).
15.
A. V.
Ovchinnikov
,
O. V.
Chefonov
,
D. S.
Sitnikov
,
I. V.
Ilina
,
S. I.
Ashitkov
, and
M. B.
Agranat
, “
A source of THz radiation with electric field strength of more than 1 MV cm−1 on the basis of 100-Hz femtosecond Cr: Forsterite laser system
,”
Quantum Electron.
48
,
554
558
(
2018
).
16.
D. S.
Sitnikov
,
I. V.
Ilina
, and
A. A.
Pronkin
, “
Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm
,”
Opt. Eng.
59
,
061613
(
2020
).
17.
S.-W.
Huang
,
E.
Granados
,
W. R.
Huang
,
K.-H.
Hong
,
L. E.
Zapata
, and
F. X.
Kärtner
, “
High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate
,”
Opt. Lett.
38
,
796
798
(
2013
).
18.
C. P.
Hauri
,
C.
Ruchert
,
C.
Vicario
, and
F.
Ardana
, “
Strong-field single-cycle thz pulses generated in an organic crystal
,”
Appl. Phys. Lett.
99
,
161116
(
2011
).
19.
A.
Gopal
,
P.
Singh
,
S.
Herzer
,
A.
Reinhard
,
A.
Schmidt
,
U.
Dillner
,
T.
May
,
H.-G.
Meyer
,
W.
Ziegler
, and
G. G.
Paulus
, “
Characterization of 700 μJ T rays generated during high-power laser solid interaction
,”
Opt. Lett.
38
,
4705
4707
(
2013
).
20.
J.
Déchard
,
A.
Debayle
,
X.
Davoine
,
L.
Gremillet
, and
L.
Bergé
, “
Terahertz pulse generation in underdense relativistic plasmas: From photoionization-induced radiation to coherent transition radiation
,”
Phys. Rev. Lett.
120
,
144801
(
2018
).
21.
G. Q.
Liao
,
Y. T.
Li
,
C.
Li
,
L. N.
Su
,
Y.
Zheng
,
M.
Liu
,
W. M.
Wang
,
Z. D.
Hu
,
W. C.
Yan
,
J.
Dunn
,
J.
Nilsen
,
J.
Hunter
,
Y.
Liu
,
X.
Wang
,
L. M.
Chen
,
J. L.
Ma
,
X.
Lu
,
Z.
Jin
,
R.
Kodama
,
Z. M.
Sheng
, and
J.
Zhang
, “
Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses
,”
Phys. Rev. Lett.
114
,
255001
(
2015
).
22.
F.
Bakhtiari
,
M.
Esmaeilzadeh
, and
B.
Ghafary
, “
Terahertz radiation with high power and high efficiency in a magnetized plasma
,”
Phys. Plasmas
24
,
073112
(
2017
).
23.
C.
Li
,
G.-Q.
Liao
,
M.-L.
Zhou
,
F.
Du
,
J.-L.
Ma
,
Y.-T.
Li
,
W.-M.
Wang
,
Z.-M.
Sheng
,
L.-M.
Chen
, and
J.
Zhang
, “
Backward terahertz radiation from intense laser-solid interactions
,”
Opt. Express
24
,
4010
4021
(
2016
).
24.
G.-Q.
Liao
,
Y.-T.
Li
,
C.
Li
,
S.
Mondal
,
H. A.
Hafez
,
M. A.
Fareed
,
T.
Ozaki
,
W.-M.
Wang
,
Z.-M.
Sheng
, and
J.
Zhang
, “
Terahertz emission from two-plasmon-decay induced transient currents in laser-solid interactions
,”
Phys. Plasmas
23
,
013104
(
2016
).
25.
S.
Herzer
,
A.
Woldegeorgis
,
J.
Polz
,
A.
Reinhard
,
M.
Almassarani
,
B.
Beleites
,
F.
Ronneberger
,
R.
Grosse
,
G. G.
Paulus
,
U.
Hübner
,
T.
May
, and
A.
Gopal
, “
An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities
,”
New J. Phys.
20
,
063019
(
2018
).
26.
Z.
Wu
,
A. S.
Fisher
,
J.
Goodfellow
,
M.
Fuchs
,
D.
Daranciang
,
M.
Hogan
,
H.
Loos
, and
A.
Lindenberg
, “
Intense terahertz pulses from SLAC electron beams using coherent transition radiation
,”
Rev. Sci. Instrum.
84
,
022701
(
2013
).
27.
K.
Teramoto
,
S.
Tokita
,
T.
Terao
,
S.
Inoue
,
R.
Yasuhara
,
T.
Nagashima
,
S.
Kojima
,
J.
Kawanaka
,
K.
Mori
,
M.
Hashida
, and
S.
Sakabe
, “
Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires
,”
Appl. Phys. Lett.
113
,
051101
(
2018
).
28.
H. B.
Zhuo
,
S. J.
Zhang
,
X. H.
Li
,
H. Y.
Zhou
,
X. Z.
Li
,
D. B.
Zou
,
M. Y.
Yu
,
H. C.
Wu
,
Z. M.
Sheng
, and
C. T.
Zhou
, “
Terahertz generation from laser-driven ultrafast current propagation along a wire target
,”
Phys. Rev. E
95
,
013201
(
2017
).
29.
K.
Nakajima
, “
Novel efficient THz undulator using a laser-driven wire
,”
Light Sci. Appl.
6
(
5
),
e17063–e17063
(
2017
).
30.
Y.
Tian
,
J.
Liu
,
Y.
Bai
,
S.
Zhou
,
H.
Sun
,
W.
Liu
,
J.
Zhao
,
R.
Li
, and
Z.
Xu
, “
Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation
,”
Nat. Photonics
11
,
242
246
(
2017
).
31.
Y.
Zeng
,
C.
Zhou
,
L.
Song
,
X.
Lu
,
Z.
Li
,
Y.
Ding
,
Y.
Bai
,
Y.
Xu
,
Y.
Leng
,
Y.
Tian
,
J.
Liu
,
R.
Li
, and
Z.
Xu
, “
Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets
,”
Opt. Express
28
,
15258
15267
(
2020
).
32.
K.
Quinn
,
P. A.
Wilson
,
C. A.
Cecchetti
,
B.
Ramakrishna
,
L.
Romagnani
,
G.
Sarri
,
L.
Lancia
,
J.
Fuchs
,
A.
Pipahl
,
T.
Toncian
,
O.
Willi
,
R. J.
Clarke
,
D.
Neely
,
M.
Notley
,
P.
Gallegos
,
D. C.
Carroll
,
M. N.
Quinn
,
X. H.
Yuan
,
P.
McKenna
,
T. V.
Liseykina
,
A.
Macchi
, and
M.
Borghesi
, “
Laser-driven ultrafast field propagation on solid surfaces
,”
Phys. Rev. Lett.
102
,
194801
(
2009
).
33.
J.
Derouillat
,
A.
Beck
,
F.
Pérez
,
T.
Vinci
,
M.
Chiaramello
,
A.
Grassi
,
M.
Flé
,
G.
Bouchard
,
I.
Plotnikov
,
N.
Aunai
,
J.
Dargent
,
C.
Riconda
, and
M.
Grech
, “
Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation
,”
Comput. Phys. Commun.
222
,
351
373
(
2018
).
34.
I.
Kochetkov
,
N.
Bukharskii
,
M.
Ehret
,
Y.
Abe
,
F.
Law
,
V.
Ospina
,
J.
Santos
,
S.
Fujioka
,
G.
Schaumann
,
B.
Zielbauer
,
A.
Kuznetsov
, and
P.
Korneev
, “
Machine learning analysis of quasi-stationary magnetic fields optically-driven by short laser pulses
,” available at .
35.
D. N.
Gupta
and
A.
Jain
, “
Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma
,”
Optik
227
,
165824
(
2021
).
You do not currently have access to this content.