We report on the analysis and design of atomically thin graphene resonant nanoelectromechanical systems (NEMS) that can be engineered to exhibit anharmonicity in the quantum regime. Analysis of graphene two-dimensional (2D) NEMS resonators suggests that with device lateral size scaled down to ∼10–30 nm, restoring force due to the third-order (Duffing) stiffness in graphene NEMS can rise to equal or even exceed the force of linear stiffness, enabling strongly nonlinear NEMS resonators with anharmonic potential energy that produces sufficient deviation from a quantum harmonic spectrum, which is necessary toward realizing NEMS qubits. Furthermore, the calculations provide device design guidelines and scaling of anharmonicity in graphene NEMS to facilitate future fabrication of graphene NEMS qubits with the desired nonlinear dynamical characteristics and performance. The results in this work shall help open possibilities for engineering a new type of qubits based on 2D resonant NEMS, which may offer a much more miniaturized, densely packed, and scalable qubit platform, supplementing today's mainstream technologies such as superconducting and trapped ion qubits.

1.
T.
Ladd
,
F.
Jelezko
,
R.
Laflamme
,
Y.
Nakamura
,
C.
Monore
, and
J.
O'Brien
, “
Quantum computers
,”
Nature
464
,
45
53
(
2010
).
2.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I.-J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
,
369
395
(
2020
).
3.
C. D.
Bruzewicz
,
J.
Chiaverini
,
R.
McConnell
, and
J. M.
Sage
, “
Trapped-ion quantum computing: Progress and challenges
,”
Appl. Phys. Rev.
6
,
021314
(
2019
).
4.
J.
Wang
,
F.
Sciarrino
,
A.
Laing
, and
M. G.
Thompson
, “
Integrated photonic quantum technologies
,”
Nat. Photonics
14
,
273
284
(
2020
).
5.
I.
Buluta
,
S.
Ashhab
, and
F.
Nori
, “
Natural and artificial atoms for quantum computation
,”
Rep. Prog. Phys.
74
,
104401
(
2011
).
6.
J.
Clarke
and
F. K.
Wilhelm
, “
Superconducting quantum bits
,”
Nature
453
,
1031
1042
(
2008
).
7.
J.
Koch
,
T. M.
Yu
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the Cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
8.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
9.
F.
Arute
,
K.
Arya
,
R.
Babbush
 et al., “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
511
(
2019
).
10.
H.-S.
Zhong
,
H.
Wang
,
Y.-H.
Deng
 et al., “
Quantum computational advantage using photons
,”
Science
370
,
1460
1463
(
2020
).
11.
Y.
Wu
,
W.-S.
Bao
,
S.
Cao
 et al., “
Strong quantum computational advantage using a superconducting quantum processor
,”
Phys. Rev. Lett.
127
,
180501
(
2021
).
12.
R.
Barends
,
J.
Kelly
,
A.
Megrant
,
D.
Sank
,
E.
Jeffrey
,
Y.
Chen
,
Y.
Yin
,
B.
Chiaro
,
J.
Mutus
,
C.
Neill
,
P.
O'Malley
,
P.
Roushan
,
J.
Wenner
,
T. C.
White
,
A. N.
Cleland
, and
J. M.
Martinis
, “
Coherent Josephson qubit suitable for scalable quantum integrated circuits
,”
Phys. Rev. Lett.
111
,
080502
(
2013
).
13.
D.
Rosenberg
,
D.
Kim
,
R.
Das
 et al., “
3D integrated superconducting qubits
,”
npj Quantum Inf.
3
,
42
(
2017
).
14.
K. C.
Schwab
and
M. L.
Roukes
, “
Putting mechanics into quantum mechanics
,”
Phys. Today
58
(
7
),
36
42
(
2005
).
15.
M.
Aspelmeyer
,
P.
Meystre
, and
K. C.
Schwab
, “
Quantum optomechanics
,”
Phys. Today
65
(
7
),
29
35
(
2012
).
16.
M. D.
LaHaye
,
J.
Suh
,
P. M.
Echternach
,
K. C.
Schwab
, and
M. L.
Roukes
, “
Nanomechanical measurements of a superconducting qubit
,”
Nature
459
,
960
964
(
2009
).
17.
A. D.
O'Connell
,
M.
Hofheinz
,
M.
Ansmann
,
R. C.
Bialczak
,
M.
Lenander
,
E.
Lucero
,
M.
Neeley
,
D.
Sank
,
H.
Wang
,
M.
Weides
,
J.
Wenner
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Quantum ground state and single-phonon control of a mechanical resonator
,”
Nature
464
,
697
703
(
2010
).
18.
Y.
Chu
,
P.
Kharel
,
T.
Yoon
,
L.
Frunzio
,
P. T.
Rakich
, and
R. J.
Schoelkopf
, “
Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator
,”
Nature
563
,
666
700
(
2018
).
19.
Y.
Chu
,
P.
Kharel
,
W. H.
Renninger
,
L. D.
Burkhart
,
L.
Frunzio
,
P. T.
Rakich
, and
R. J.
Schoelkopf
, “
Quantum acoustics with superconducting qubits
,”
Science
358
,
199
202
(
2017
).
20.
A.
Bienfait
,
K. J.
Satzinger
,
Y. P.
Zhong
,
H.-S.
Chang
,
M.-H.
Chou
,
C. R.
Conner
,
É.
Dumur
,
J.
Grebel
,
G. A.
Peairs
,
R. G.
Povey
, and
A. N.
Cleland
, “
Phonon-mediated quantum state transfer and remote qubit entanglement
,”
Science
364
,
368
371
(
2019
).
21.
K. J.
Satzinger
,
Y. P.
Zhong
,
H.-S.
Chang
,
G. A.
Peairs
,
A.
Bienfait
,
M.-H.
Chou
,
A. Y.
Cleland
,
C. R.
Conner
,
É.
Dumur
,
J.
Grebel
,
I.
Gutierrez
,
B. H.
November
,
R. G.
Povey
,
S. J.
Whiteley
,
D. D.
Awschalom
,
D. I.
Schuster
, and
A. N.
Cleland
, “
Quantum control of surface acoustic-wave phonons
,”
Nature
563
,
661
665
(
2018
).
22.
P.
Arrangoiz-Arriola
,
E. A.
Wollack
,
Z.
Wang
,
M.
Pechal
,
W.
Jiang
,
T. P.
McKenna
,
J. D.
Witmer
,
R. V.
Laer
, and
A. H.
Safavi-Naeini
, “
Resolving the energy levels of a nanomechanical oscillator
,”
Nature
571
,
537
540
(
2019
).
23.
A.
Noguchi
,
R.
Yamazaki
,
Y.
Tabuchi
, and
Y.
Nakamura
, “
Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator
,”
Nat. Commun.
11
,
1183
(
2020
).
24.
J. D.
Teufel
,
T.
Donner
,
D.
Li
,
J. W.
Harlow
,
M. S.
Allman
,
K.
Cicak
,
A. J.
Sirois
,
J. D.
Whittaker
,
K. W.
Lehnert
, and
R. W.
Simmonds
, “
Sideband cooling of micromechanical motion to the quantum ground state
,”
Nature
475
,
359
363
(
2011
).
25.
J. B.
Clark
,
F.
Lecocq
,
R. W.
Simmonds
,
J.
Aumentado
, and
J. D.
Teufel
, “
Sideband cooling beyond the quantum backaction limit with squeezed light
,”
Nature
541
,
191
195
(
2017
).
26.
H.
Ren
,
M. H.
Matheny
,
G. S.
MacCabe
,
J.
Luo
,
H.
Pfeifer
,
M.
Mirhosseini
, and
O.
Painter
, “
Two-dimensional optomechanical crystal cavity with high quantum cooperativity
,”
Nat. Commun.
11
,
3373
(
2020
).
27.
G. S.
MacCabe
,
H.
Ren
,
J.
Luo
,
J. D.
Cohen
,
H.
Zhou
,
A.
Sipahigil
,
M.
Mirhosseini
, and
O.
Painter
, “
Nano-acoustic resonator with ultralong phonon lifetime
,”
Science
370
,
840
843
(
2020
).
28.
F.
Rouxinol
,
Y.
Hao
,
F.
Brito
,
A. O.
Caldeira
,
E. K.
Irish
, and
M. D.
LaHaye
, “
Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system
,”
Nanotechnology
27
,
364003
(
2016
).
29.
M.
Poot
and
H. S. J.
van der Zant
, “
Mechanical systems in the quantum regime
,”
Phys. Rep.
511
,
273
335
(
2012
).
30.
H. W. C.
Postma
,
I.
Kozinsky
,
A.
Husain
, and
M. L.
Roukes
, “
Dynamic range of nanotube- and nanowire-based electromechanical systems
,”
Appl. Phys. Lett.
86
,
223105
(
2005
).
31.
J.
Lee
,
Z.
Wang
,
K.
He
,
R.
Yang
,
J.
Shan
, and
P. X.-L.
Feng
, “
Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range
,”
Sci. Adv.
4
,
eaao6653
(
2018
).
32.
S.
Savel'ev
,
X.
Hu
, and
F.
Nori
, “
Quantum electromechanics: Qubits from buckling nanobars
,”
New J. Phys.
8
,
105
(
2006
).
33.
F.
Pistolesi
,
A. N.
Cleland
, and
A.
Bachtold
, “
Proposal for a nanomechanical qubit
,”
Phys. Rev. X
11
,
031027
(
2021
).
34.
C.
Chen
,
S.
Rosenblatt
,
K. I.
Bolotin
,
W.
Kalb
,
P.
Kim
,
I.
Kymissis
,
H. L.
Stormer
,
T. F.
Heinz
, and
J.
Hone
, “
Performance of monolayer graphene nanomechanical resonators with electrical readout
,”
Nat. Nanotechnol.
4
,
861
867
(
2009
).
35.
V.
Singh
,
S. J.
Bosman
,
B. H.
Schneider
,
Y. M.
Blanter
,
A.
Castellanos-Gomez
, and
G. A.
Steele
, “
Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity
,”
Nat. Nanotechnol.
9
,
820
824
(
2014
).
36.
J.
Güttinger
,
A.
Noury
,
P.
Weber
,
A. M.
Eriksson
,
C.
Lagoin
,
J.
Moser
,
C.
Eichler
,
A.
Wallraff
,
A.
Isacsson
, and
A.
Bachtold
, “
Energy-dependent path of dissipation in nanomechanical resonators
,”
Nat. Nanotechnol.
12
,
631
636
(
2017
).
37.
P.
Weber
,
J.
Güttinger
,
A.
Noury
,
J.
Vergara-Cruz
, and
A.
Bachtold
, “
Force sensitivity of multilayer graphene optomechanical devices
,”
Nat. Commun.
7
,
12496
(
2016
).
38.
P. X.-L.
Feng
, “
Resonant nanoelectromechanical systems (NEMS): progress and emerging frontiers
,” in
Proceedings of the 33rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2020)
, Vancouver, Canada, January 18–22 (
IEEE
,
2020
), pp.
212
217
.
39.
Z.-Z.
Zhang
,
X.-X.
Song
,
G.
Luo
,
Z.-J.
Su
,
K.-L.
Wang
,
G.
Cao
,
H.-O.
Li
,
M.
Xiao
,
G.-C.
Guo
,
L.
Tian
,
G.-W.
Deng
, and
G.-P.
Guo
, “
Coherent phonon dynamics in spatially separated graphene mechanical resonators
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
5582
5587
(
2020
).
40.
F.
Ye
,
A.
Islam
,
T.
Zhang
, and
P. X.-L.
Feng
, “
Ultrawide frequency tuning of atomic layer van der Waals heterostructure electromechanical resonators
,”
Nano. Lett.
21
,
5508
5515
(
2021
).
41.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
, “
Measurement of the elastic properties and intrinsic strength of monolayer graphene
,”
Science
321
,
385
388
(
2008
).
42.
K.
Schwab
,
E. A.
Henriksen
,
J. M.
Worlock
, and
M. L.
Roukes
, “
Measurement of the quantum of thermal conductance
,”
Nature
404
,
974
977
(
2000
).
43.
W.
Fon
,
K. C.
Schwab
,
J. M.
Worlock
, and
M. L.
Roukes
, “
Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K
,”
Phys. Rev. B
66
,
045302
(
2002
).
44.
X. Y.
Jin
,
A.
Kmal
,
A. P.
Sears
,
T.
Gudmundsen
,
D.
Hover
,
J.
Miloxi
,
R.
Slattery
,
F.
Yan
,
J.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Thermal and residual excited-state population in a 3D transmon qubit
,”
Phys. Rev. Lett.
114
,
24501
(
2015
).
45.
J.-H.
Yeh
,
J.
LeFebvre
,
S.
Premaratne
,
F. C.
Wellstood
, and
B. S.
Palmer
, “
Microwave attenuators for use with quantum devices below 100 mK
,”
J. Appl. Phys.
121
,
224501
(
2017
).
46.
C.
Wagner
and
N.
Harned
, “
Lithography gets extreme
,”
Nat. Photonics
4
,
24
26
(
2010
).
47.
V. R.
Manfrinato
,
L.
Zhang
,
D.
Su
,
H.
Duan
,
R. G.
Hobbs
,
E. A.
Stach
, and
K. K.
Berggren
, “
Resolution limits of electron-beam lithography toward the atomic scale
,”
Nano Lett.
13
,
1555
1558
(
2013
).
48.
M.
Goldsche
,
G. J.
Verbiest
,
T.
Khodkov
,
J.
Sonntag
,
N.
von den Driesch
,
D.
Buca
, and
C.
Stampfer
, “
Fabrication of comb-drive actuators for straining nanostructured suspended graphene
,”
Nanotechnology
29
,
375301
(
2018
).
49.
Y.
Xie
,
J.
Lee
,
Y.
Wang
, and
P. X.-L.
Feng
, “
Straining and tuning atomic layer nanoelectromechanical resonators via comb-drive MEMS actuators
,”
Adv. Mater. Technol.
6
,
2000794
(
2021
).
50.
I.
Kozinsky
, “
Nonlinear nanoelectromechanical systems
,” Ph.D. thesis (
California Institute of Technology
,
2006
).
51.
Chebfun Guide
, edited by
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
(
Pafnuty Publications
,
Oxford
,
2014
).
52.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer's guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
53.
T.
Faust
,
J.
Rieger
,
M. J.
Seitner
,
J. P.
Kotthaus
, and
E. M.
Weig
, “
Coherent control of a classical nanomechanical two-level system
,”
Nat. Phys.
9
,
485
488
(
2013
).
54.
M.
Pernpeintner
,
P.
Schmidt
,
D.
Schwienbacher
,
R.
Gross
, and
H.
Huebl
, “
Frequency control and coherent excitation transfer in a nanostring-resonator network
,”
Phys. Rev. Appl.
10
,
034007
(
2018
).
55.
R.
Riedinger
,
A.
Wallucks
,
I.
Marinković
,
C.
Löschnauer
,
M.
Aspelmeyer
,
S.
Hong
, and
S.
Gröblacher
, “
Remote quantum entanglement between two micromechanical oscillator
,”
Nature
556
,
473
477
(
2018
).
56.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
57.
M.
Pechal
,
P.
Arrangoiz-Arriola
, and
A. H.
Safavi-Naeini
, “
Superconducting circuit quantum computing with nanomechanical resonators as storage
,”
Quantum Sci. Technol.
4
,
015006
(
2019
).
58.
F.
Tacchino
,
A.
Chiesa
,
M. D.
LaHaye
,
S.
Carretta
, and
D.
Gerace
, “
Electromechanical quantum simulators
,”
Phys. Rev. B
97
,
214302
(
2018
).
You do not currently have access to this content.