The mechanical behavior of nanoparticles governs their performance and stability in many applications. However, the small sizes of technologically relevant nanoparticles, with diameters in the range of 10 nm or less, significantly complicate experimental examination. These small nanoparticles are difficult to manipulate onto commercial test platforms and deform at loads that are below the typical noise floor of the testing instruments. Here, we synthesized small platinum nanoparticles directly onto a mechanical tester and used a modified nanomanipulator to enhance load resolution to the nanonewton scale. We demonstrated the in situ compression of an 11.5-nm platinum nanoparticle with simultaneous high-resolution measurements of load and particle morphology. Molecular dynamics simulations were performed on similarly sized particles to achieve complementary measurements of load and morphology, along with atomic resolution of dislocations. The experimental and simulation results revealed comparable values for the critical resolved shear stress for failure, 1.28 and 1.15 GPa, respectively. Overall, this investigation demonstrated the promise of, and some initial results from, the combination of atomistic simulations and in situ experiments with an unprecedented combination of high spatial resolution and high load resolution to understand the behavior of metal nanoparticles under compression.

1.
M.
Rai
,
A. P.
Ingle
,
S.
Birla
,
A.
Yadav
, and
C. A. D.
Santos
, “
Strategic role of selected noble metal nanoparticles in medicine
,”
Crit. Rev. Microbiol.
42
,
696
719
(
2015
).
2.
M.
Zebarjadi
,
K.
Esfarjani
,
A.
Shakouri
,
J.-H.
Bahk
,
Z.
Bian
,
G.
Zeng
,
J.
Bowers
,
H.
Lu
,
J.
Zide
, and
A.
Gossard
, “
Effect of nanoparticle scattering on thermoelectric power factor
,”
Appl. Phys. Lett.
94
,
202105
(
2009
).
3.
R. R.
Gadkari
,
S. W.
Ali
,
R.
Alagirusamy
, and
A.
Das
, “
Silver nanoparticles in water purification: Opportunities and challenges
,” in
Modern Age Environmental Problems and Their Remediation
, edited by
M.
Oves
,
M.
Zain Khan
, and
I. M. I.
Ismail
(
Springer International Publishing
,
2018
), pp.
229
237
.
4.
Y. G.
Liu
,
S. L.
Shi
,
X. Y.
Xue
,
J. Y.
Zhang
,
Y. G.
Wang
, and
T. H.
Wang
, “
Edge–truncated cubic platinum nanoparticles as anode catalysts for direct methanol fuel cells
,”
Appl. Phys. Lett.
92
,
203105
(
2008
).
5.
Y.
Chen
,
Y.
Zhai
,
L.
Deng
,
N.
Wang
,
Y.
Mao
,
J.
Yang
, and
Y.
Huang
, “
Optimizing Ag–Pt core–shell nanostructures for solar energy conversion, plasmonic photocatalysis, and photothermal catalysis
,”
Appl. Phys. Lett.
114
,
183902
(
2019
).
6.
X. W.
Gu
,
L. A.
Hanson
,
C. N.
Eisler
,
M. A.
Koc
, and
A. P.
Alivisatos
, “
Pseudoelasticity at large strains in au nanocrystals
,”
Phys. Rev. Lett.
121
,
056102
(
2018
).
7.
A.
Parakh
,
S.
Lee
,
K. A.
Harkins
,
M. T.
Kiani
,
D.
Doan
,
M.
Kunz
,
A.
Doran
,
L. A.
Hanson
,
S.
Ryu
, and
X. W.
Gu
, “
Nucleation of dislocations in 3.9 nm nanocrystals at high pressure
,”
Phys. Rev. Lett.
124
,
106104
(
2020
).
8.
J.
Zimmerman
,
A.
Bisht
,
Y.
Mishin
, and
E.
Rabkin
, “
Size and shape effects on the strength of platinum nanoparticles
,”
J. Mater. Sci.
56
,
18300
18312
(
2021
).
9.
A.
Sharma
,
J.
Hickman
,
N.
Gazit
,
E.
Rabkin
, and
Y.
Mishin
, “
Nickel nanoparticles set a new record of strength
,”
Nat. Commun.
9
,
4102
(
2018
).
10.
G.
Casillas
,
J. P.
Palomares-Báez
,
J. L.
Rodríguez-López
,
J.
Luo
,
A.
Ponce
,
R.
Esparza
,
J. J.
Velázquez-Salazar
,
A.
Hurtado-Macias
,
J.
González-Hernández
, and
M.
José-Yacaman
, “
In situ TEM study of mechanical behaviour of twinned nanoparticles
,”
Philos. Mag.
92
,
4437
4453
(
2012
).
11.
D.
Mordehai
,
O.
David
, and
R.
Kositski
, “
Nucleation–controlled plasticity of metallic nanowires and nanoparticles
,”
Adv. Mater.
30
,
1706710
(
2018
).
12.
A.
Nafari
,
D.
Karlen
,
C.
Rusu
,
K.
Svensson
,
H.
Olin
, and
P.
Enoksson
, “
MEMS sensor for in situ TEM atomic force microscopy
,”
J. Microelectromech. Syst.
17
,
328
333
(
2008
).
13.
C.
Carlton
and
P.
Ferreira
, “
In situ TEM nanoindentation of nanoparticles
,”
Micron
43
,
1134
1139
(
2012
).
14.
J.
Sun
,
L.
He
,
Y.-C.
Lo
,
T.
Xu
,
H.
Bi
,
L.
Sun
,
Z.
Zhang
,
S. X.
Mao
, and
J.
Li
, “
Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles
,”
Nat. Mater.
13
,
1007
1012
(
2014
).
15.
J.
Amodeo
and
L.
Pizzagalli
, “
Modeling the mechanical properties of nanoparticles: A review
,”
C. R. Phys.
22
,
35–66
(
2021
).
16.
P.
Armstrong
and
W.
Peukert
, “
Size effects in the elastic deformation behavior of metallic nanoparticles
,”
J. Nanopart. Res.
14
,
1288
(
2012
).
17.
P.
Tian
, “
Molecular dynamics simulations of nanoparticles
,”
Annu. Rep. Prog. Chem., Sect. C
104
,
142
164
(
2008
).
18.
L.
Yang
,
J.-J.
Bian
, and
G.-F.
Wang
, “
Impact of atomic-scale surface morphology on the size-dependent yield stress of gold nanoparticles
,”
J. Phys. D: Appl. Phys.
50
,
245302
(
2017
).
19.
L.
Yang
,
J.
Feng
,
Y.
Ding
,
J. J.
Bian
, and
G. F.
Wang
, “
An analytical description for the elastic compression of metallic polyhedral nanoparticles
,”
AIP Adv.
6
,
085113
(
2016
).
20.
Y.
Feruz
and
D.
Mordehai
, “
Towards a universal size–dependent strength of face-centered cubic nanoparticles
,”
Acta Mater.
103
,
433
441
(
2016
).
21.
D.
Mordehai
,
S.-W.
Lee
,
B.
Backes
,
D. J.
Srolovitz
,
W. D.
Nix
, and
E.
Rabkin
, “
Size effect in compression of single-crystal gold microparticles
,”
Acta Mater.
59
,
5202
5215
(
2011
).
22.
J.
Amodeo
and
K.
Lizoul
, “
Mechanical properties and dislocation nucleation in nanocrystals with blunt edges
,”
Mater. Des.
135
,
223
231
(
2017
).
23.
R. M.
Rioux
,
H.
Song
,
P.
Yang
, and
G. A.
Somorjai
, “
Platinum nanoclusters' size and surface structure sensitivity of catalytic reactions
,” in
Metal Nanoclusters in Catalysis and Materials Science: The Issue Size Control
, edited by
B.
Corain
,
G.
Schmid
, and
N.
Toshima
(
Elsevier
,
Amsterdam
,
2008
), Chap. 7, pp.
149
166
.
24.
X.
Jiang
,
B.
Du
,
Y.
Huang
, and
J.
Zheng
, “
Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications
,”
Nano Today
21
,
106
125
(
2018
).
25.
X.
Huang
,
C.
Guo
,
J.
Zuo
,
N.
Zheng
, and
G. D.
Stucky
, “
An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties
,”
Small
5
,
361
365
(
2009
).
26.
S.
Hwang
,
J.
Nam
,
J.
Song
,
S.
Jung
,
J.
Hur
,
K.
Im
,
N.
Park
, and
S.
Kim
, “
A sub 6 nanometer plasmonic gold nanoparticle for pH-responsive near-infrared photothermal cancer therapy
,”
New J. Chem.
38
,
918
922
(
2014
).
27.
L.
Jiao
and
J. R.
Regalbuto
, “
The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica
,”
J. Catal.
260
,
329
341
(
2008
).
28.
J. T.
Miller
,
M.
Schreier
,
A. J.
Kropf
, and
J. R.
Regalbuto
, “
A fundamental study of platinum tetraammine impregnation of silica: 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size
,”
J. Catal.
225
,
203
212
(
2004
).
29.
S. B.
Vishnubhotla
,
S. R.
Khanal
,
J.
Li
,
E. A.
Stach
, and
T. D. B.
Jacobs
, “
Investigating load-dependent conduction through platinum nanocontacts using in situ electromechanical testing inside a transmission electron microscope
,” in
IEEE 17th International Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2017
), pp.
130
134
.
30.
S. B.
Vishnubhotla
,
R.
C
,
S. R.
Khanal
,
J.
Li
,
E. A.
Stach
,
A.
Martini
, and
T. D. B.
Jacobs
, “
Quantitative measurement of contact area and electron transport across platinum nanocontacts for scanning probe microscopy and electrical nanodevices
,”
Nanotechnology
30
,
045705
(
2019
).
31.
S. B.
Vishnubhotla
,
R.
C
,
S. R.
Khanal
,
X.
Hu
,
A.
Martini
, and
T. D. B.
Jacobs
, “
Matching atomistic simulations and in situ experiments to investigate the mechanics of nanoscale contact
,”
Tribol. Lett.
67
,
97
(
2019
).
32.
J. E.
Sader
,
J. W.
Chon
, and
P.
Mulvaney
, “
Calibration of rectangular atomic force microscope cantilevers
,”
Rev. Sci. Instrum.
70
,
3967
3969
(
1999
).
33.
J.-O.
Bovin
and
J.-O.
Malm
, “
Atomic resolution electron microscopy of small metal clusters
,”
Z. Phys. D
19
,
293
298
(
1991
).
34.
P.
Bing
,
X.
Hui-min
,
X.
Bo-qin
, and
D.
Fu-long
, “
Performance of sub-pixel registration algorithms in digital image correlation
,”
Meas. Sci. Technol
17
,
1615
1621
(
2006
).
35.
E.
Schmid
and
W.
Boas
,
Plasticity of Crystals with Special Reference to Metals
(
F.A. Hughes
,
1950
).
36.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
37.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
38.
X. W.
Zhou
,
R. A.
Johnson
, and
H. N. G.
Wadley
, “
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers
,”
Phys. Rev. B
69
,
144113
(
2004
).
39.
I. M.
Padilla Espinosa
,
T. D. B.
Jacobs
, and
A.
Martini
, “
Evaluation of force fields for molecular dynamics simulations of platinum in bulk and nanoparticle forms
,”
J. Chem. Theory Comput.
17
,
4486
(
2021
).
40.
H.
Heinz
,
R. A.
Vaia
,
B. L.
Farmer
, and
R. R.
Naik
, “
Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials
,”
J. Phys. Chem. C
112
,
17281
17290
(
2008
).
41.
A. G.
Jackson
,
Slip Systems BT - Handbook of Crystallography: For Electron Microscopists and Others
(
Springer
,
New York
,
1991
), pp.
83
88
.
42.
A.
Schneider
,
B.
Clark
,
C.
Frick
,
P.
Gruber
, and
E.
Arzt
, “
Effect of orientation and loading rate on compression behavior of small-scale Mo pillars
,”
Mater. Sci. Eng., A
508
,
241
246
(
2009
).
43.
M.
Mlikota
and
S.
Schmauder
, “
On the critical resolved shear stress and its importance in the fatigue performance of steels and other metals with different crystallographic structures
,”
Metals
8
,
883
(
2018
).
44.
T. J.
Flanagan
,
O.
Kovalenko
,
E.
Rabkin
, and
S.-W.
Lee
, “
The effect of defects on strength of gold microparticles
,”
Scr. Mater.
171
,
83
86
(
2019
).
45.
J. R.
Greer
,
W. C.
Oliver
, and
W. D.
Nix
, “
Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients
,”
Acta Mater.
53
,
1821
1830
(
2005
).

Supplementary Material

You do not currently have access to this content.