Based on first-principles calculations, we predict a giant crystal-induced transverse current in antiferromagnetic γ-FeMn. This abnormal transverse current cannot be understood by the conventional anomalous Hall effect (e.g., Berry curvature, skew scattering, and side jump), which widely exists in ferromagnetic and antiferromagnetic materials. Moreover, the efficiency of the transverse current generation therein can be as large as 18.4% at low temperatures; this is an order of magnitude larger than the anomalous Hall angle in conventional ferromagnetic materials, such as Fe or Fe-based alloys. Furthermore, using the Boltzmann transport equation and a tight-binding model, we conclude that the asymmetric group velocities on the Fermi surface are the origin of this crystal-induced transverse current in γ-FeMn. Additionally, with a systematic discussion, we show that this unusual effect is not dependent on specific materials but is universal in any crystal with anisotropic symmetry.

1.
S.
Shtrikman
and
H.
Thomas
, “
Remarks on linear magneto-resistance and magneto-heat-conductivity
,”
Solid State Commun.
3
,
147
150
(
1965
).
2.
S. S.
Tsirkin
and
I.
Souza
, “
On the separation of Hall and Ohmic nonlinear responses
,” arXiv:2106.06522 [cond-mat.mtrl-sci] (
2021
).
3.
J.
Kondo
, “
Anomalous Hall effect and magnetoresistance of ferromagnetic metals
,”
Prog. Theor. Phys.
27
,
772
792
(
1962
).
4.
T.
Miyasato
,
N.
Abe
,
T.
Fujii
,
A.
Asamitsu
,
S.
Onoda
,
Y.
Onose
,
N.
Nagaosa
, and
Y.
Tokura
, “
Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets
,”
Phys. Rev. Lett.
99
,
086602
(
2007
).
5.
L.
Ye
,
Y.
Tian
,
X.
Jin
, and
D.
Xiao
, “
Temperature dependence of the intrinsic anomalous Hall effect in nickel
,”
Phys. Rev. B
85
,
220403
(
2012
).
6.
V. L.
Grigoryan
,
J.
Xiao
,
X.
Wang
, and
K.
Xia
, “
Anomalous Hall effect scaling in ferromagnetic thin films
,”
Phys. Rev. B
96
,
144426
(
2017
).
7.
G.
Su
,
Y.
Li
,
D.
Hou
,
X.
Jin
,
H.
Liu
, and
S.
Wang
, “
Anomalous Hall effect in amorphous
Co40Fe40B20,”
Phys. Rev. B
90
,
214410
(
2014
).
8.
L.
Wang
,
X. R.
Wang
,
T.
Min
, and
K.
Xia
, “
Charge-induced ferromagnetic phase transition and anomalous Hall effect in full d-band nonmagnetic metals
,”
Phys. Rev. B
99
,
224416
(
2019
).
9.
T.
Jungwirth
,
Q.
Niu
, and
A. H.
MacDonald
, “
Anomalous Hall effect in ferromagnetic semiconductors
,”
Phys. Rev. Lett.
88
,
207208
(
2002
).
10.
H.
Toyosaki
,
T.
Fukumura
,
Y.
Yamada
,
K.
Nakajima
,
T.
Chikyow
,
T.
Hasegawa
,
H.
Koinuma
, and
M.
Kawasaki
, “
Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor
,”
Nat. Mater.
3
,
221
224
(
2004
).
11.
P.
Nozières
and
C.
Lewiner
, “
A simple theory of the anomalous Hall effect in semiconductors
,”
J. Phys.
34
,
901
915
(
1973
).
12.
J.
Sinova
,
D.
Culcer
,
Q.
Niu
,
N. A.
Sinitsyn
,
T.
Jungwirth
, and
A. H.
MacDonald
, “
Universal intrinsic spin Hall effect
,”
Phys. Rev. Lett.
92
,
126603
(
2004
).
13.
J.
Smit
, “
The spontaneous Hall effect in ferromagnetics I
,”
Physica
21
,
877
887
(
1955
).
14.
J.
Smit
, “
The spontaneous Hall effect in ferromagnetics II
,”
Physica
24
,
39
51
(
1958
).
15.
L.
Berger
, “
Side-jump mechanism for the Hall effect of ferromagnets
,”
Phys. Rev. B
2
,
4559
4566
(
1970
).
16.
Z.
Fang
,
N.
Nagaosa
,
K. S.
Takahashi
,
A.
Asamitsu
,
R.
Mathieu
,
T.
Ogasawara
,
H.
Yamada
,
M.
Kawasaki
,
Y.
Tokura
, and
K.
Terakura
, “
The anomalous Hall effect and magnetic monopoles in momentum space
,”
Science
302
,
92
95
(
2003
).
17.
Y.
Yao
,
L.
Kleinman
,
A. H.
MacDonald
,
J.
Sinova
,
T.
Jungwirth
,
D.-S.
Wang
,
E.
Wang
, and
Q.
Niu
, “
First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe
,”
Phys. Rev. Lett.
92
,
037204
(
2004
).
18.
M.-C.
Chang
and
Q.
Niu
, “
Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands
,”
Phys. Rev. B
53
,
7010
7023
(
1996
).
19.
G.
Sundaram
and
Q.
Niu
, “
Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects
,”
Phys. Rev. B
59
,
14915
14925
(
1999
).
20.
F. D. M.
Haldane
, “
Berry curvature on the fermi surface: Anomalous Hall effect as a topological fermi-liquid property
,”
Phys. Rev. Lett.
93
,
206602
(
2004
).
21.
X.
Wang
,
D.
Vanderbilt
,
J. R.
Yates
, and
I.
Souza
, “
Fermi-surface calculation of the anomalous Hall conductivity
,”
Phys. Rev. B
76
,
195109
(
2007
).
22.
J.
Železný
,
H.
Gao
,
A.
Manchon
,
F.
Freimuth
,
Y.
Mokrousov
,
J.
Zemen
,
J.
Mašek
,
J.
Sinova
, and
T.
Jungwirth
, “
Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets
,”
Phys. Rev. B
95
,
014403
(
2017
).
23.
P.
Wadley
,
S.
Reimers
,
M. J.
Grzybowski
,
C.
Andrews
,
M.
Wang
,
J. S.
Chauhan
,
B. L.
Gallagher
,
R. P.
Campion
,
K. W.
Edmonds
,
S. S.
Dhesi
,
F.
Maccherozzi
,
V.
Novak
,
J.
Wunderlich
, and
T.
Jungwirth
, “
Current polarity-dependent manipulation of antiferromagnetic domains
,”
Nat. Nanotechnol.
13
,
362
365
(
2018
).
24.
K.
Olejník
,
T.
Seifert
,
Z.
Kašpar
,
V.
Novák
,
P.
Wadley
,
R. P.
Campion
,
M.
Baumgartner
,
P.
Gambardella
,
P.
Němec
,
J.
Wunderlich
,
J.
Sinova
,
P.
Kužel
,
M.
Müller
,
T.
Kampfrath
, and
T.
Jungwirth
, “
Terahertz electrical writing speed in an antiferromagnetic memory
,”
Sci. Adv.
4
,
eaar3566
(
2018
).
25.
S. Y.
Bodnar
,
L.
Šmejkal
,
I.
Turek
,
T.
Jungwirth
,
O.
Gomonay
,
J.
Sinova
,
A. A.
Sapozhnik
,
H. J.
Elmers
,
M.
Kläui
, and
M.
Jourdan
, “
Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
,”
Nat. Commun.
9
,
348
(
2018
).
26.
K.
Olejnik
,
V.
Schuler
,
X.
Marti
,
V.
Novak
,
Z.
Kaspar
,
P.
Wadley
,
R.
Campion
,
K.
Edmonds
,
B.
Gallagher
,
J.
Garces
,
M.
Baumgartner
,
P.
Gambardella
, and
T.
Jungwirth
, “
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
,”
Nat. Commun.
8
,
15434
(
2017
).
27.
T.
Jungwirth
,
J.
Sinova
,
A.
Manchon
,
X.
Marti
,
J.
Wunderlich
, and
C.
Felser
, “
The multiple directions of antiferromagnetic spintronics
,”
Nat. Phys.
14
,
200
203
(
2018
).
28.
H.
Chen
,
Q.
Niu
, and
A. H.
MacDonald
, “
Anomalous Hall effect arising from noncollinear antiferromagnetism
,”
Phys. Rev. Lett.
112
,
017205
(
2014
).
29.
S.
Nakatsuji
,
N.
Kiyohara
, and
T.
Higo
, “
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
,”
Nature
527
,
212
215
(
2015
).
30.
G.
Gurung
,
D.-F.
Shao
,
T. R.
Paudel
, and
E. Y.
Tsymbal
, “
Anomalous Hall conductivity of noncollinear magnetic antiperovskites
,”
Phys. Rev. Mater.
3
,
044409
(
2019
).
31.
X.
Zhou
,
J.-P.
Hanke
,
W.
Feng
,
F.
Li
,
G.-Y.
Guo
,
Y.
Yao
,
S.
Blügel
, and
Y.
Mokrousov
, “
Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets mn3xN with x=Ga, Zn, Ag, or Ni
,”
Phys. Rev. B
99
,
104428
(
2019
).
32.
Z. H.
Liu
,
Y. J.
Zhang
,
G. D.
Liu
,
B.
Ding
,
E. K.
Liu
,
H. M.
Jafri
,
Z. P.
Hou
,
W. H.
Wang
,
X. Q.
Ma
, and
G. H.
Wu
, “
Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga
,”
Sci. Rep.
7
,
515
(
2017
).
33.
Y.
You
,
X.
Chen
,
X.
Zhou
,
Y.
Gu
,
R.
Zhang
,
F.
Pan
, and
C.
Song
, “
Anomalous Hall effect-like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films
,”
Adv. Electron. Mater.
5
,
1800818
(
2019
).
34.
L.
Šmejkal
,
R.
González-Hernández
,
T.
Jungwirth
, and
J.
Sinova
, “
Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets
,”
Sci. Adv.
6
,
23
(
2020
).
35.
E.
Liu
,
Y.
Sun
,
N.
Kumar
,
L.
Muechler
,
A.
Sun
,
L.
Jiao
,
S.-Y.
Yang
,
D.
Liu
,
A.
Liang
,
Q.
Xu
,
J.
Kroder
,
V.
Süß
,
H.
Borrmann
,
C.
Shekhar
,
Z.
Wang
,
C.
Xi
,
W.
Wang
,
W.
Schnelle
,
S.
Wirth
,
Y.
Chen
,
S. T. B.
Goennenwein
, and
C.
Felser
, “
Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
,”
Nat. Phys.
14
,
1125
1131
(
2018
).
36.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
, “
Anomalous Hall effect
,”
Rev. Mod. Phys.
82
,
1539
1592
(
2010
).
37.
P.
Bisanti
,
G.
Mazzone
, and
F.
Sacchetti
, “
Electronic structure of FCC Fe-Mn alloys. II. Spin-density measurements
,”
J. Phys. F: Met. Phys.
17
,
1425
1435
(
1987
).
38.
D.
Spišák
and
J.
Hafner
, “
Magnetic structures in ordered and disordered γ-FeMn alloys: Ordering due to disorder
,”
Phys. Rev. B
61
,
11569
11575
(
2000
).
39.
O. K.
Andersen
,
O.
Jepsen
, and
G.
Krier
,
Proceedings of the Miniworkshop on Methods of Electronic Structure Calculations and Working Group on Disordered Alloys
(
World Scientific
,
1995
), pp.
63
124
.
40.
L.
Vitos
,
Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
(
Springer
,
2007
).
41.
See http://emto.gitlab.io/index.html for “
The Open Source EMTO-CPA Code
.”
42.
Y.
Xu
,
S.
Wang
, and
K.
Xia
, “
Spin-transfer torques in antiferromagnetic metals from first principles
,”
Phys. Rev. Lett.
100
,
226602
(
2008
).
43.
L.
Wang
,
T.
Min
, and
K.
Xia
, “
First-principles study of the anomalous Hall effect based on exact muffin-tin orbitals
,”
Phys. Rev. B
103
,
054204
(
2021
).
44.
T.
Ando
, “
Quantum point contacts in magnetic fields
,”
Phys. Rev. B
44
,
8017
8027
(
1991
).
45.
Q.
Zhang
,
J.
Yan
,
Y.
Zhang
, and
Y.
Ke
, “
Exact muffin tin orbital based first-principles method for electronic-structure and electron-transport simulation of device materials
,”
Phys. Rev. B
100
,
075134
(
2019
).
46.
Z.
Chen
,
Q.
Zhang
,
Y.
Zhang
,
L.
Wang
,
M.
Sang
, and
Y.
Ke
, “
Exact muffin-tin orbital based fully relativistic simulation of device materials: Electronic charge and spin current
,”
Phys. Rev. B
102
,
035405
(
2020
).
47.
K.
Xia
,
M.
Zwierzycki
,
M.
Talanana
,
P. J.
Kelly
, and
G. E. W.
Bauer
, “
First-principles scattering matrices for spin transport
,”
Phys. Rev. B
73
,
064420
(
2006
).
48.
A. A.
Starikov
,
Y.
Liu
,
Z.
Yuan
, and
P. J.
Kelly
, “
Calculating the transport properties of magnetic materials from first principles including thermal and alloy disorder, noncollinearity, and spin-orbit coupling
,”
Phys. Rev. B
97
,
214415
(
2018
).
49.
I.
Turek
,
J.
Kudrnovský
,
V.
Drchal
,
L.
Szunyogh
, and
P.
Weinberger
, “
Interatomic electron transport by semiempirical and ab initio tight-binding approaches
,”
Phys. Rev. B
65
,
125101
(
2002
).
50.
S.
Wang
,
Y.
Xu
, and
K.
Xia
, “
First-principles study of spin-transfer torques in layered systems with noncollinear magnetization
,”
Phys. Rev. B
77
,
184430
(
2008
).
51.
L.
Wang
,
R. J. H.
Wesselink
,
Y.
Liu
,
Z.
Yuan
,
K.
Xia
, and
P. J.
Kelly
, “
Giant room temperature interface spin Hall and inverse spin Hall effects
,”
Phys. Rev. Lett.
116
,
196602
(
2016
).
52.
R. J. H.
Wesselink
,
K.
Gupta
,
Z.
Yuan
, and
P. J.
Kelly
, “
Calculating spin transport properties from first principles: Spin currents
,”
Phys. Rev. B
99
,
144409
(
2019
).
53.
Y.
Liu
,
A. A.
Starikov
,
Z.
Yuan
, and
P. J.
Kelly
, “
First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder
,”
Phys. Rev. B
84
,
014412
(
2011
).
54.
Y.-N.
Zhao
,
S.-X.
Qu
, and
K.
Xia
, “
Influence of the surface structure and vibration mode on the resistivity of cu films
,”
J. Appl. Phys.
110
,
064312
(
2011
).
55.
Y.
Liu
,
Z.
Yuan
,
R. J. H.
Wesselink
,
A. A.
Starikov
,
M.
van Schilfgaarde
, and
P. J.
Kelly
, “
Direct method for calculating temperature-dependent transport properties
,”
Phys. Rev. B
91
,
220405
(
2015
).
56.
N.
Delyagin
,
A.
Erzinkyan
,
V.
Parfenova
, and
I.
Rozantsev
, “
Mössbauer studies of the states of Fe atoms in the antiferromagnetic Fe-Mn Invar alloys
,”
J. Alloys Compd.
573
,
11
14
(
2013
).
57.
D.
Hou
,
G.
Su
,
Y.
Tian
,
X.
Jin
,
S. A.
Yang
, and
Q.
Niu
, “
Multivariable scaling for the anomalous Hall effect
,”
Phys. Rev. Lett.
114
,
217203
(
2015
).
58.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
,
405
408
(
1982
).
59.
M. V.
Berry
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
392
,
45
57
(
1984
).
60.
D.
Xiao
,
M.-C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
2007
(
2010
).
61.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
62.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
63.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
MOkrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Weirzbowska
,
N.
Mazari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys. Cond. Matter
32
(
16
),
165902
(
2020
).
64.
S. S.
Tsirkin
, “
High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code
,”
NPJ Comp. Mater.
7
(
1
),
33
(
2021
).
65.
D.
Destraz
,
L.
Das
,
S. S.
Tsirkin
,
Y.
Xu
,
T.
Neupert
,
J.
Chang
,
A.
Schilling
,
A. G.
Grushin
,
J.
Kohlbrecher
,
L.
Keller
,
P.
Puphal
,
E.
Pomjakushina
, and
J. S.
White
, “
Magnetism and anomalous transport in the Weyl semimetal PrAlGe: Possible route to axial gauge fields
,”
NPJ Quantum Mater.
5
(
1
),
5
(
2020
).
66.
F. L.
Zeng
,
Z. Y.
Ren
,
Y.
Li
,
J. Y.
Zeng
,
M. W.
Jia
,
J.
Miao
,
A.
Hoffmann
,
W.
Zhang
,
Y. Z.
Wu
, and
Z.
Yuan
, “
Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in coxfe1x single-crystal films
,”
Phys. Rev. Lett.
125
,
097201
(
2020
).

Supplementary Material

You do not currently have access to this content.