Two-dimensional (2D) perovskites have been demonstrated great promise in x-ray detection application because of their stability, tunability, and the unique electronic properties. The centimeter-sized 2D perovskite (PMA)2PbI4 single crystal and the corresponding x-ray detector were fabricated. The Cu ion implanted device exhibits an excellent sensitivity of 283 μC Gyair−1 cm−2, the significantly enhanced mobility-lifetime (μτ) product of 8.05 × 10−3 cm2 V−1, and the lowest detectable dose rate of 2.13 μGyair s−1. Experimental observation combined with the DFT calculations shows that the improvement in Cu ion implanted x-ray detection is ascribed to the enhanced photoinduced charge carrier density and μτ product, and the increased carrier dissociation capability associated deeply with the decreased binding energy of exciton in the inorganic layer quasi-quantum well. The incorporation of the Cu interstitials by high-energy Cu ion implantation is able to introduce the donor and acceptor states with additional charge transfer channeling, resulting in the decreased exciton binding energy and fast dissociation of the exciton and the quick carrier extraction. Cu ion implantation regulating the dissociation of charge carriers in low-dimensional perovskites will motivate the application for 2D perovskite in high-performance x-ray detectors.

1.
N.-G.
Park
,
M.
Grätzel
,
T.
Miyasaka
 et al, “
Towards stable and commercially available perovskite solar cells
,”
Nat. Energy
1
,
16152
(
2016
).
2.
L.
Zhao
,
R. A.
Kerner
,
Z.
Xiao
 et al, “
Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices
,”
ACS Energy Lett.
1
,
595
602
(
2016
).
3.
Z.
Xiao
,
R. A.
Kerner
,
L.
Zhao
 et al, “
Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites
,”
Nat. Photonics
11
,
108
115
(
2017
).
4.
L.
Zhao
,
Y.-W.
Yeh
,
N. L.
Tran
 et al, “
In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices
,”
ACS Nano
11
,
3957
3964
(
2017
).
5.
L.
Zhao
,
J.
Gao
,
Y. L.
Lin
 et al, “
Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices
,”
Adv. Mater.
29
,
1605317
(
2017
).
6.
Y.
Fang
and
J.
Huang
, “
Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction
,”
Adv. Mater.
27
,
2804
2810
(
2015
).
7.
Y.
Liu
,
J.
Sun
,
Z.
Yang
 et al, “
20‐mm‐Large single‐crystalline formamidinium‐perovskite wafer for mass production of integrated photodetectors
,”
Adv. Opt. Mater.
4
,
1829
1837
(
2016
).
8.
Z.-K.
Tan
,
R. S.
Moghaddam
,
M. L.
Lai
 et al, “
Credgington, D. Bright light-emitting diodes based on organometal halide perovskite
,”
Nat. Nanotechnol.
9
,
687
692
(
2014
).
9.
Z.
Tan
,
Y.
Wu
,
H.
Hong
 et al, “
Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector
,”
J. Am. Chem. Soc.
138
,
16612
16615
(
2016
).
10.
W.
Nie
,
H.
Tsai
,
R.
Asadpour
 et al, “
High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
,”
Science
347
,
522
525
(
2015
).
11.
J. S.
Manser
,
J. A.
Christians
, and
P. V.
Kamat
, “
Intriguing optoelectronic properties of metal halide perovskites
,”
Chem. Rev.
116
,
12956
13008
(
2016
).
12.
J.
Huang
,
Y.
Yuan
,
Y.
Shao
, and
Y.
Yan
, “
Understanding the physical properties of hybrid perovskites for photovoltaic applications
,”
Nat. Rev. Mater.
2
,
17042
(
2017
).
13.
I.
Spanopoulos
,
I.
Hadar
,
W.
Ke
 et al, “
Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability
,”
J. Am. Chem. Soc.
141
,
5518
5534
(
2019
).
14.
L. N.
Quan
,
M.
Yuan
,
R.
Comin
 et al, “
Ligand-stabilized reduced-dimensionality perovskites
,”
J. Am. Chem. Soc.
138
,
2649
2655
(
2016
).
15.
H.
Tsai
,
W.
Nie
,
J.-C.
Blancon
 et al, “
High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells
,”
Nature
536
,
312
316
(
2016
).
16.
E. S.
Vasileiadou
,
B.
Wang
,
I.
Spanopoulos
 et al, “
Insight on the stability of thick layers in 2D Ruddlesden–Popper and Dion–Jacobson lead iodide perovskites
,”
J. Am. Chem. Soc.
143
,
2523
2536
(
2021
).
17.
J.-C.
Blancon
,
A. V.
Stier
,
H.
Tsai
 et al, “
Scaling law for excitons in 2D perovskite quantum wells
,”
Nat. Commun.
9
,
2254
(
2018
).
18.
Y.
Takeoka
,
K.
Asai
,
M.
Rikukawa
, and
K.
Sanui
, “
Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films
,”
Bull. Chem. Soc. Jpn.
79
,
1607
1613
(
2006
).
19.
C. C.
Stoumpos
,
D. H.
Cao
,
D. J.
Clark
 et al, “
Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors
,”
Chem. Mater.
28
,
2852
2867
(
2016
).
20.
Y.
Chen
,
Y.
Sun
,
J.
Peng
 et al, “
2D Ruddlesden–Popper perovskites for optoelectronics
,”
Adv. Mater.
30
,
1703487
(
2018
).
21.
S.
Ithurria
,
M.
Tessier
,
B.
Mahler
 et al, “
Colloidal nanoplatelets with two-dimensional electronic structure
,”
Nat. Mater.
10
,
936
941
(
2011
).
22.
Z.-G.
Yu
, “
Optical deformation potential and self-trapped excitons in 2D hybrid perovskites
,”
Phys. Chem. Chem. Phys.
21
,
22293
22301
(
2019
).
23.
F.
Thouin
,
S.
Neutzner
,
D.
Cortecchia
 et al, “
Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder
,”
Phys. Rev. Mater.
2
,
034001
(
2018
).
24.
X.
Hong
,
T.
Ishihara
, and
A.
Nurmikko
, “
Dielectric confinement effect on excitons in PbI4-based layered semiconductors
,”
Phys. Rev. B
45
,
6961
(
1992
).
25.
T.
Ishihara
,
J.
Takahashi
, and
T.
Goto
, “
Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4
,”
Phys. Rev. B
42
,
11099
(
1990
).
26.
M. D.
Smith
,
B. A.
Connor
, and
H. I.
Karunadasa
, “
Tuning the luminescence of layered halide perovskites
,”
Chem. Rev.
119
,
3104
3139
(
2019
).
27.
I.
García-Benito
,
C.
Quarti
,
V. I.
Queloz
 et al, “
Fashioning fluorous organic spacers for tunable and stable layered hybrid perovskites
,”
Chem. Mater.
30
,
8211
8220
(
2018
).
28.
H.
Li
,
J.
Song
,
W.
Pan
 et al, “
Sensitive and stable 2D perovskite single‐crystal x‐ray detectors enabled by a supramolecular anchor
,”
Adv. Mater.
32
,
2003790
(
2020
).
29.
J. V.
Passarelli
,
D. J.
Fairfield
,
N. A.
Sather
 et al, “
Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation desig
,”
J. Am. Chem. Soc.
140
,
7313
7323
(
2018
).
30.
J. V.
Passarelli
,
C. M.
Mauck
,
S. W.
Winslow
 et al, “
Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer
,”
Nat. Chem.
12
,
672
682
(
2020
).
31.
J.
Van Donkelaar
,
C.
Yang
,
A.
Alves
 et al, “
Single atom devices by ion implantation
,”
J. Phys.: Condens. Matter.
27
,
154204
(
2015
).
32.
Z.
Li
and
F.
Chen
, “
Ion beam modification of two-dimensional materials: Characterization, properties, and applications
,”
Appl. Phys. Rev.
4
,
011103
(
2017
).
33.
P.
Slawomir
,
H.
Arsalan
,
G.-A.
Mahdi
 et al, “
Chlorine doping of MoSe2 flakes by ion implantation
,”
Nanoscale
13
,
5834
5846
(
2021
).
34.
H.-J.
Feng
and
Q.
Zhang
, “
Predicting efficiencies >25% A3MX3 photovoltaic materials and Cu ion implantation modification
,”
Appl. Phys. Lett.
118
,
111902
(
2021
).
35.
O.
Lupan
,
L.
Chow
,
L. K.
Ono
 et al, “
Synthesis and characterization of Agor Sb-Doped ZnO nanorods by a facile hydrothermal route
,”
J. Phys. Chem. C
114
(
29
),
12401
12408
(
2010
).
36.
D.
Amaresh
and
B.
Durga
, “
Efficacy of ion implantation in zinc oxide for optoelectronic applications: A review
,”
ACS Appl. Electron. Mater.
3
,
3693
3714
(
2021
).
37.
P.
Nayak
,
D.
Moore
,
B.
Wenger
 et al, “
Mechanism for rapid growth of organic–inorganic halide perovskite crystals
,”
Nat. Commun.
7
,
13303
(
2016
).
38.
F.
Yao
,
J.
Peng
,
R.
Li
 et al, “
Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals
,”
Nat. Commun.
11
,
1194
(
2020
).
39.
J.-C.
Blancon
,
H.
Tsai
,
W.
Nie
 et al, “
Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites
,”
Science
355
,
1288
1292
(
2017
).
40.
A.
Yangui
,
S.
Pillet
,
E.-E.
Bendeif
 et al, “
Broadband emission in a new two-dimensional Cd-Based hybrid Perovskite
,”
ACS Photonics
5
,
1599
(
2018
).
41.
A.
Yangui
,
S.
Pillet
,
A.
Mlayah
 et al, “
Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2 [PbI4]
,”
J. Chem. Phys.
143
,
224201
(
2015
).
42.
O.
Yaffe
,
A.
Chernikov
,
Z. M.
Norman
 et al, “
Excitons in ultrathin organic-inorganic perovskite crystals
,”
Phys. Rev. B
92
,
045414
(
2015
).
43.
K.
Abdel-Baki
,
F.
Boitier
,
H.
Diab
 et al, “
Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites
,”
J. Appl. Phys.
119
,
064301
(
2016
).
44.
Y.
Liu
,
H.
Ye
,
Y.
Zhang
 et al, “
Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection
,”
Matter
1
,
465
480
(
2019
).
45.
M.
Berger
,
J.
Hubbell
,
S.
Seltzer
, et al, see http://physics.nist.gov/xcom for “
XCOM: Photon Cross Sections Database, NIST
” (
2013
)
46.
Y.
Zhang
,
Y.
Liu
,
Z.
Xu
 et al, “
Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance x-ray detection
,”
Nat. Commun.
11
,
3007
(
2020
).
47.
C. C.
Stoumpos
,
C. D.
Malliakas
,
J. A.
Peters
 et al, “
Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection
,”
Cryst. Growth Des.
13
,
2722
2727
(
2013
).
48.
S.
Kasap
, “
X-ray sensitivity of photoconductors: Application to stabilized a-Se
,”
J. Phys. D
33
,
2853
(
2000
).
49.
J.
Ayres
, “
Characterization of trapping states in polycrystalline‐silicon thin film transistors by deep level transient spectroscopy
,”
J. Appl. Phys.
74
,
1787
1792
(
1993
).

Supplementary Material

You do not currently have access to this content.