Using micromagnets to enable electron spin manipulation in silicon qubits has emerged as a very popular method, enabling single-qubit gate fidelities larger than 99.9%. However, these micromagnets also apply stray magnetic field gradients onto the qubits, making the spin states susceptible to electric field noise and limiting their coherence times. We describe here a magnet design that minimizes qubit dephasing, while allowing for fast qubit control and addressability. Specifically, we design and optimize magnet dimensions and positions relative to the quantum dots, minimizing dephasing from magnetic field gradients. The micromagnet-induced dephasing rates with this design are up to three orders of magnitude lower than state-of-the-art implementations, allowing for long coherence times. This design is robust against fabrication errors and can be combined with a wide variety of silicon qubit device geometries, thereby allowing exploration of coherence limiting factors and novel upscaling approaches.

1.
M.
Veldhorst
,
J. C.
Hwang
,
C. H.
Yang
,
A. W.
Leenstra
,
B.
De Ronde
,
J. P.
Dehollain
,
J. T.
Muhonen
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
, and
A. S.
Dzurak
, “
An addressable quantum dot qubit with fault-tolerant control-fidelity
,”
Nat. Nanotechnol.
9
,
981
985
(
2014
).
2.
M.
Veldhorst
,
C. H.
Yang
,
J. C.
Hwang
,
W.
Huang
,
J. P.
Dehollain
,
J. T.
Muhonen
,
S.
Simmons
,
A.
Laucht
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
, and
A. S.
Dzurak
, “
A two-qubit logic gate in silicon
,”
Nature
526
,
410
414
(
2015
).
3.
J.
Yoneda
,
K.
Takeda
,
T.
Otsuka
,
T.
Nakajima
,
M. R.
Delbecq
,
G.
Allison
,
T.
Honda
,
T.
Kodera
,
S.
Oda
,
Y.
Hoshi
,
N.
Usami
,
K. M.
Itoh
, and
S.
Tarucha
, “
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
,”
Nat. Nanotechnol.
13
,
102
106
(
2018
).
4.
C. H.
Yang
,
K. W.
Chan
,
R.
Harper
,
W.
Huang
,
T.
Evans
,
J. C.
Hwang
,
B.
Hensen
,
A.
Laucht
,
T.
Tanttu
,
F. E.
Hudson
,
S. T.
Flammia
,
K. M.
Itoh
,
A.
Morello
,
S. D.
Bartlett
, and
A. S.
Dzurak
, “
Silicon qubit fidelities approaching incoherent noise limits via pulse engineering
,”
Nat. Electron.
2
,
151
158
(
2019
).
5.
W.
Huang
,
C. H.
Yang
,
K. W.
Chan
,
T.
Tanttu
,
B.
Hensen
,
R. C.
Leon
,
M. A.
Fogarty
,
J. C.
Hwang
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
,
A.
Laucht
, and
A. S.
Dzurak
, “
Fidelity benchmarks for two-qubit gates in silicon
,”
Nature
569
,
532
536
(
2019
).
6.
S.
Nadj-Perge
,
S. M.
Frolov
,
E. P.
Bakkers
, and
L. P.
Kouwenhoven
, “
Spin-orbit qubit in a semiconductor nanowire
,”
Nature
468
,
1084
1087
(
2010
).
7.
Y.
Tokura
,
W. G.
Van Der Wiel
,
T.
Obata
, and
S.
Tarucha
, “
Coherent single electron spin control in a slanting Zeeman field
,”
Phys. Rev. Lett.
96
,
047202
(
2006
).
8.
T. F.
Watson
,
S. G.
Philips
,
E.
Kawakami
,
D. R.
Ward
,
P.
Scarlino
,
M.
Veldhorst
,
D. E.
Savage
,
M. G.
Lagally
,
M.
Friesen
,
S. N.
Coppersmith
,
M. A.
Eriksson
, and
L. M.
Vandersypen
, “
A programmable two-qubit quantum processor in silicon
,”
Nature
555
,
633
637
(
2018
).
9.
A.
Noiri
,
J.
Yoneda
,
T.
Nakajima
,
T.
Otsuka
,
M. R.
Delbecq
,
K.
Takeda
,
S.
Amaha
,
G.
Allison
,
A.
Ludwig
,
A. D.
Wieck
, and
S.
Tarucha
, “
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
,”
Appl. Phys. Lett.
108
,
153101
(
2016
).
10.
E.
Kawakami
,
P.
Scarlino
,
D. R.
Ward
,
F. R.
Braakman
,
D. E.
Savage
,
M. G.
Lagally
,
M.
Friesen
,
S. N.
Coppersmith
,
M. A.
Eriksson
, and
L. M.
Vandersypen
, “
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
,”
Nat. Nanotechnol.
9
,
666
670
(
2014
).
11.
T.
Takakura
,
M.
Pioro-Ladrière
,
T.
Obata
,
Y. S.
Shin
,
R.
Brunner
,
K.
Yoshida
,
T.
Taniyama
, and
S.
Tarucha
, “
Triple quantum dot device designed for three spin qubits
,”
Appl. Phys. Lett.
97
,
212104
(
2010
).
12.
T.
Struck
,
A.
Hollmann
,
F.
Schauer
,
O.
Fedorets
,
A.
Schmidbauer
,
K.
Sawano
,
H.
Riemann
,
N. V.
Abrosimov
,
Ł.
Cywiński
,
D.
Bougeard
, and
L. R.
Schreiber
, “
Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe
,”
npj Quantum Inf.
6
,
1–7
(
2020
).
13.
K.
Takeda
,
A.
Noiri
,
T.
Nakajima
,
J.
Yoneda
,
T.
Kobayashi
, and
S.
Tarucha
, “
Quantum tomography of an entangled three-spin state in silicon
,” arXiv:2010.10316 (
2020
).
14.
M.
Pioro-Ladrière
,
Y.
Tokura
,
T.
Obata
,
T.
Kubo
, and
S.
Tarucha
, “
Micromagnets for coherent control of spin-charge qubit in lateral quantum dots
,”
Appl. Phys. Lett.
90
,
024105
(
2007
). 0612314 [cond-mat].
15.
D. M.
Zajac
,
A. J.
Sigillito
,
M.
Russ
,
F.
Borjans
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
Resonantly driven CNOT gate for electron spins
,”
Science
359
,
439
442
(
2018
).
16.
X.
Mi
,
J. V.
Cady
,
D. M.
Zajac
,
P. W.
Deelman
, and
J. R.
Petta
, “
Strong coupling of a single electron in silicon to a microwave photon
,”
Science
355
,
156
158
(
2017
).
17.
N.
Samkharadze
,
G.
Zheng
,
N.
Kalhor
,
D.
Brousse
,
A.
Sammak
,
U. C.
Mendes
,
A.
Blais
,
G.
Scappucci
, and
L. M.
Vandersypen
, “
Strong spin-photon coupling in silicon
,”
Science
359
,
1123
1127
(
2018
).
18.
J.
Yoneda
,
T.
Otsuka
,
T.
Takakura
,
M.
Pioro-Ladrière
,
R.
Brunner
,
H.
Lu
,
T.
Nakajima
,
T.
Obata
,
A.
Noiri
,
C. J.
Palmstrøm
,
A. C.
Gossard
, and
S.
Tarucha
, “
Robust micromagnet design for fast electrical manipulations of single spins in quantum dots
,”
Appl. Phys. Express
8
,
084401
(
2015
).
19.
R.
Neumann
and
L. R.
Schreiber
Simulation of micro-magnet stray-field dynamics for spin qubit manipulation
,”
J. Appl. Phys.
117
,
193903
(
2015
).
20.
X.
Zhang
,
Y.
Zhou
,
R. Z.
Hu
,
R. L.
Ma
,
M.
Ni
,
K.
Wang
,
G.
Luo
,
G.
Cao
,
G. L.
Wang
,
P.
Huang
,
X.
Hu
,
H. W.
Jiang
,
H. O.
Li
,
G. C.
Guo
, and
G. P.
Guo
, “
Controlling synthetic spin-orbit coupling in a silicon quantum dot with magnetic field
,”
Phys. Rev. Appl.
15
,
44042
(
2021
).
21.
R.
Li
,
L.
Petit
,
D. P.
Franke
,
J. P.
Dehollain
,
J.
Helsen
,
M.
Steudtner
,
N. K.
Thomas
,
Z. R.
Yoscovits
,
K. J.
Singh
,
S.
Wehner
,
L. M.
Vandersypen
,
J. S.
Clarke
, and
M.
Veldhorst
, “
A crossbar network for silicon quantum dot qubits
,”
Sci. Adv.
4
,
eaar3960
(
2018
).
22.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
,
A. S.
Dzurak
,
R.
Ishihara
,
A.
Morello
,
D. J.
Reilly
,
L. R.
Schreiber
, and
M.
Veldhorst
, “
Interfacing spin qubits in quantum dots and donors–hot, dense, and coherent
,”
npj Quantum Inf.
3
,
1
10
(
2017
).
23.
D.
Loss
,
D. P.
DiVincenzo
, and
P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
24.
M. J.
Donahue
and
D. G.
Porter
, “
OOMMF User's Guide, Version 1.0
,” Interagency Report No. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD,
1999
.
25.
F. A.
Mohiyaddin
,
B. T.
Chan
,
T.
Ivanov
,
A.
Spessot
,
P.
Matagne
,
J.
Lee
,
B.
Govoreanu
,
I. P.
Raduimec
,
G.
Simion
,
N. I.
Stuyck
,
R.
Li
,
F.
Ciubotaru
,
G.
Eneman
,
F. M.
Bufler
,
S.
Kubicek
, and
J.
Jussot
, “
Multiphysics simulation design of silicon quantum dot qubit devices
,” in
Technical Digest—International Electron Devices Meeting (IEDM)
(
Institute of Electrical and Electronics Engineers Inc
.,
2019
).
26.
Y. S.
Shin
,
T.
Obata
,
Y.
Tokura
,
M.
Pioro-Ladrière
,
R.
Brunner
,
T.
Kubo
,
K.
Yoshida
, and
S.
Tarucha
, “
Single-spin readout in a double quantum dot including a micromagnet
,”
Phys. Rev. Lett.
104
,
046802
(
2010
).
27.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M.
Vandersypen
, “
Spins in few-electron quantum dots
,”
Rev. Mod. Phys.
79
,
1217
1265
(
2007
).
28.
M.
Benito
,
X.
Croot
,
C.
Adelsberger
,
S.
Putz
,
X.
Mi
,
J. R.
Petta
, and
G.
Burkard
, “
Electric-field control and noise protection of the flopping-mode spin qubit
,”
Phys. Rev. B
100
,
125430
(
2019
).
29.
J.
Cayao
,
M.
Benito
, and
G.
Burkard
, “
Programable two-qubit gates in capacitively coupled flopping-mode spin qubits
,”
Phys. Rev. B
101
,
195438
(
2020
).

Supplementary Material

You do not currently have access to this content.