At a metal–ferroelectric junction, it has been considered that the electric polarization of the ferroelectric material can affect the electronic structure of the neighboring metal. Here, we demonstrate that the valence state of Pd can be shifted to the unstable high value of 4+ by the electric field of electric polarization in ferroelectric BaTiO3. Study of the absorption fine structure of both hard and soft x rays revealed the existence of Pd4+ states on the surface of Pd oxide nanoparticles. The positions of Pd and oxygen atoms are shifted in opposite directions by the electric field due to the electric polarization of ferroelectric BaTiO3. The atomic displacement of Pd and O forms a zigzag structure, in which the coordination number of Pd atoms is changed from four to six, producing a quadrivalent state. This report presents experimental evidence that ferroelectric polarization can control the electronic states of neighboring metal atoms, and we suggest that using the ferroelectric support effect may produce a new type of catalyst.

1.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Oxford University Press
,
New York
,
1977
).
2.
J. F.
Scott
,
Ferroelectric Memories
(
Springer
,
Berlin
,
2000
).
3.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
,
Nat. Mater.
12
,
617
(
2013
).
4.
E. Y.
Tsymbal
and
A.
Gruverman
,
Nat. Mater.
12
,
602
(
2013
).
5.
N.
Oshime
,
J.
Kano
,
E.
Ikenaga
,
S.
Yasui
,
Y.
Hamasaki
,
S.
Yasuhara
,
S.
Hinokuma
,
N.
Ikeda
,
P.-E.
Janolin
,
J.-M.
Kiat
,
M.
Itoh
,
T.
Yokoya
,
T.
Fujii
,
A.
Yasui
, and
H.
Osawa
,
Sci. Rep.
10
,
10702
(
2020
).
6.
V. R.
Stamenkovic
,
B. S.
Mun
,
M.
Arenz
,
K. J. J.
Mayrhofer
,
C. A.
Lucas
,
G.
Wang
,
P. N.
Ross
, and
N. M.
Markovic
,
Nat. Mater.
6
,
241
(
2007
).
7.
K.
Kusada
,
M.
Yamauchi
,
H.
Kobayashi
,
H.
Kitagawa
, and
Y.
Kubota
,
J. Am. Chem. Soc.
132
,
15896
(
2010
).
8.
K.
Kusada
,
H.
Kobayashi
,
R.
Ikeda
,
Y.
Kubota
,
M.
Takata
,
S.
Toh
,
T.
Yamamoto
,
S.
Matsumura
,
N.
Sumi
,
K.
Sato
,
K.
Nagaoka
, and
H.
Kitagawa
,
J. Am. Chem. Soc.
136
,
1864
(
2014
).
9.
T.
Matsumoto
,
T.
Komatsu
,
H.
Nakano
,
K.
Arai
,
Y.
Nagashima
,
E.
Yoo
,
T.
Yamazaki
,
M.
Kijima
,
H.
Shimizu
,
Y.
Takasawa
, and
J.
Nakamura
,
Catal. Today
90
,
277
(
2004
).
10.
K.
Sato
,
K.
Imamura
,
Y.
Kawano
,
S.
Miyahara
,
T.
Yamamoto
,
S.
Matsumura
, and
K.
Nagaoka
,
Chem. Sci.
8
,
674
(
2017
).
11.
S. J.
Tauster
,
S. C.
Fung
, and
R. L.
Garten
,
J. Am. Chem. Soc.
100
,
170
(
1978
).
12.
M.
Machida
,
T.
Eidome
,
S.
Minami
,
H. P.
Buwono
,
S.
Hinokuma
,
Y.
Nagao
, and
Y.
Nakahara
,
J. Phys. Chem. C
119
,
11653
(
2015
).
13.
A. M.
Kolpak
,
I.
Grinberg
, and
A. M.
Rappe
,
Phys. Rev. Lett.
98
,
166101
(
2007
).
14.
J. H.
Lee
and
A.
Selloni
,
Phys. Rev. Lett.
112
,
196102
(
2014
).
15.
A.
Kakekhani
and
S.
Ismail-Beigi
,
ACS Catal.
5
,
4537
(
2015
).
16.
T.
Okamoto
,
J.
Kano
,
S.
Nakamura
,
A.
Fuwa
,
T.
Otoyama
,
Y.
Nakazaki
,
H.
Hashimoto
,
J.
Takada
,
M.
Ito
, and
N.
Ikeda
,
Hyperfine Interact.
219
,
147
(
2013
).
17.
M. S.
Dresselhaus
,
Nature
292
,
196
(
1981
).
18.
D. J.
Siegel
,
M.
van Schilfgaarde
, and
J. C.
Hamilton
,
Phys. Rev. Lett.
92
,
086101
(
2004
).
19.
T.
Kawai
,
K.
Kunimori
,
T.
Kondow
,
T.
Onishi
, and
K.
Tamaru
,
Z. Phys. Chem.
86
,
268
(
1973
).
20.
G.
Parravano
,
J. Chem. Phys.
20
,
342
(
1952
).
21.
S. V.
Kalinin
,
D. A.
Bonnell
,
T.
Alvarez
,
X.
Lei
,
Z.
Hu
,
J. H.
Ferris
,
Q.
Zhang
, and
S.
Dunn
,
Nano Lett.
2
,
589
(
2002
).
22.
X. Y.
Liu
,
K.
Kitamura
,
K.
Terabe
,
H.
Hatano
, and
N.
Ohashi
,
Appl. Phys. Lett.
91
,
044101
(
2007
).
23.
Y.
Inoue
,
I.
Yoshioka
, and
K.
Sato
,
J. Phys. Chem.
88
,
1148
(
1984
).
24.
A. L.
Cabrera
,
B. C.
Sales
,
M. B.
Maple
,
H.
Suhl
,
G. W.
Stupian
, and
A. B.
Chase
,
Mater. Res. Bull.
14
,
1155
(
1979
).
25.
D.
Li
,
M. H.
Zhao
,
J.
Garra
,
A. M.
Kolpak
,
A. M.
Rappe
,
D. A.
Bonnell
, and
J. M.
Vohs
,
Nat. Mater.
7
,
473
(
2008
).
26.
Y.
Inoue
,
Catal. Surv. Jpn.
3
,
95
(
1999
).
28.
J.
Kano
,
T.
Kizuka
,
F.
Shikanai
, and
S.
Kojima
,
Nanotechnology
20
,
295704
(
2009
).
29.
B.
Ravel
and
M.
Newville
,
J. Synchrotron Radiat.
12
,
537
(
2005
).
30.
M. O.
Krause
and
J. H.
Oliver
,
J. Phys. Chem. Ref. Data
8
,
329
(
1979
).
31.
K.
Shimizu
,
H.
Maeshima
,
H.
Yoshida
,
A.
Satsuma
, and
T.
Hattori
,
Phys. Chem. Chem. Phys.
3
,
862
(
2001
).
32.
S.
Yamazoe
,
Y.
Hitomi
,
T.
Shishido
, and
T.
Tanaka
,
J. Phys. Chem. C
112
,
6869
(
2008
).
33.
B. K.
Teo
and
P. A.
Lee
,
J. Am. Chem. Soc.
101
,
2815
(
1979
).
34.
D. F.
Shriver
,
P. W.
Atkins
,
T. L.
Overton
,
J. P.
Rourke
,
M. T.
Weller
, and
F. A.
Armstrong
,
Inorganic Chemistry
, 4th ed. (
Oxford University Press
,
2006
).
35.
T.
Taniyama
,
E.
Ohta
, and
T.
Sato
,
Europhys. Lett.
38
,
195
(
1997
).
36.
K.
Otto
,
L. P.
Haack
, and
J. E.
de Vries
,
Appl. Catal. B
1
,
1
12
(
1992
).
37.
K. S.
Kim
,
A. F.
Gossmann
, and
N.
Winograd
,
Anal. Chem.
46
,
197
(
1974
).
38.
H.
Zhang
,
J.
Gromek
,
G. W.
Fernando
,
S.
Boorse
, and
H. L.
Marcus
,
J. Phase Equilib.
23
,
246
(
2002
).
39.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
40.
P.
Sehnal
,
R. J. K.
Taylor
, and
I. J. S.
Fairlamb
,
Chem. Rev.
110
,
824
(
2010
).

Supplementary Material

You do not currently have access to this content.