A broadband measurement system is developed to address the issue of temperature dependence of the complex permittivity and conductivity of low-loss substrates in the millimeter-wave bands for fifth/sixth generation wireless communication applications. The developed system can provide broadband material measurements from less than 20 GHz to over 100 GHz over variable temperatures by utilizing higher order mode resonances of a balanced-type circular disk resonator (BCDR). The broadband measurement capability of the developed system is attributed to the mode-selective behavior of the BCDR over a wideband. To demonstrate the developed system, we measure the complex permittivity of the following three substrate materials over variable temperatures from °C to C: cyclo-olefin polymer (COP), ceramic-filled polytetrafluoroethylene composites, and fused silica. Furthermore, the temperature dependence of the conductivity of the surface-mounted metal is characterized for the COP substrate. The measurements indicate that the loss tangents and conductivities of the substrates increase and decrease, respectively, with the temperature and frequency in the millimeter-wave bands. The full-wave simulations using the measured complex permittivity and conductivity of the COP substrate reveal that the propagation loss of the microstrip line using the COP substrate increases with the temperature and frequency and that the increase in the loss is primarily attributed to the decrease in the conductivity.
Skip Nav Destination
Article navigation
30 August 2021
Research Article|
August 30 2021
Broadband complex permittivity and conductivity measurements in the millimeter-wave bands over variable temperatures using a balanced-type circular disk resonator
Special Collection:
Advances in 5G Physics, Materials, and Devices
Y. Kato
;
Y. Kato
a)
Research Institute for Physical Measurement, National Institute of Advanced Industrial Science and Technology
, Tsukuba, Japan
a)Author to whom correspondence should be addressed: y-katou@aist.go.jp
Search for other works by this author on:
M. Horibe
M. Horibe
Research Institute for Physical Measurement, National Institute of Advanced Industrial Science and Technology
, Tsukuba, Japan
Search for other works by this author on:
a)Author to whom correspondence should be addressed: y-katou@aist.go.jp
Note: This paper is part of the APL Special Collection on Advances in 5G Physics, Materials, and Devices.
Appl. Phys. Lett. 119, 092902 (2021)
Article history
Received:
April 29 2021
Accepted:
June 30 2021
Citation
Y. Kato, M. Horibe; Broadband complex permittivity and conductivity measurements in the millimeter-wave bands over variable temperatures using a balanced-type circular disk resonator. Appl. Phys. Lett. 30 August 2021; 119 (9): 092902. https://doi.org/10.1063/5.0055471
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00