A broadband measurement system is developed to address the issue of temperature dependence of the complex permittivity and conductivity of low-loss substrates in the millimeter-wave bands for fifth/sixth generation wireless communication applications. The developed system can provide broadband material measurements from less than 20 GHz to over 100 GHz over variable temperatures by utilizing higher order mode resonances of a balanced-type circular disk resonator (BCDR). The broadband measurement capability of the developed system is attributed to the mode-selective behavior of the BCDR over a wideband. To demonstrate the developed system, we measure the complex permittivity of the following three substrate materials over variable temperatures from 25 °C to 100°C: cyclo-olefin polymer (COP), ceramic-filled polytetrafluoroethylene composites, and fused silica. Furthermore, the temperature dependence of the conductivity of the surface-mounted metal is characterized for the COP substrate. The measurements indicate that the loss tangents and conductivities of the substrates increase and decrease, respectively, with the temperature and frequency in the millimeter-wave bands. The full-wave simulations using the measured complex permittivity and conductivity of the COP substrate reveal that the propagation loss of the microstrip line using the COP substrate increases with the temperature and frequency and that the increase in the loss is primarily attributed to the decrease in the conductivity.

1.
L.
Matti
and
L.
Kari
,
Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence
(
6G Flagship
,
Oulu, Finland
,
2019
).
2.
Z.
Zhang
,
Y.
Xiao
,
Z.
Ma
,
M.
Xiao
,
Z.
Ding
,
X.
Lei
,
G. K.
Karagiannidis
, and
P.
Fan
, “
6G wireless networks: Vision, requirements, architecture, and key technologies
,”
IEEE Veh. Technol. Mag.
14
,
28
41
(
2019
).
3.
W.
Saad
,
M.
Bennis
, and
M.
Chen
, “
A vision of 6G wireless systems: Applications, trends, technologies, and open research problems
,”
IEEE Network
34
,
134
142
(
2020
).
4.
M.
Giordani
,
M.
Polese
,
M.
Mezzavilla
,
S.
Rangan
, and
M.
Zorzi
, “
Toward 6G networks: Use cases and technologies
,”
IEEE Commun. Mag.
58
,
55
61
(
2020
).
5.
J. R.
Bhat
and
S. A.
Alqahtani
, “
6G ecosystem: Current status and future perspective
,”
IEEE Access
9
,
43134
43167
(
2021
).
6.
T.
Qi
and
S.
He
, “
Power up potential power amplifier technologies for 5G applications
,”
IEEE Microwave Mag.
20
,
89
101
(
2019
).
7.
A.
Inoue
, “
Millimeter-wave GaN devices for 5G: Massive MIMO antenna arrays for sub-6-GHz and mm-wave bandwidth
,”
IEEE Microwave Mag.
22
,
100
110
(
2021
).
8.
O. L.
López
,
H.
Alves
,
R. D.
Souza
,
S.
Montejo-Sánchez
,
E. M.
Fernandez
, and
M.
Latva-aho
, “
Massive wireless energy transfer: Enabling sustainable IoT towards 6G era
,”
IEEE Internet Things J.
8
,
8816
(
2021
).
9.
J.
Krupka
,
A.
Gregory
,
O.
Rochard
,
R.
Clarke
,
B.
Riddle
, and
J.
Baker-Jarvis
, “
Uncertainty of complex permittivity measurements by split-post dielectric resonator technique
,”
J. Eur. Ceram. Soc.
21
,
2673
2676
(
2001
).
10.
M.
Janezic
,
E.
Kuester
, and
J.
Jarvis
, “
Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator
,” in
2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535)
(
IEEE
,
2004
), Vol.
3
, pp.
1817
1820
.
11.
J.
Krupka
, “
Measurements of the complex permittivity of low loss polymers at frequency range from 5 GHz to 50 GHz
,”
IEEE Microwave Wireless Compon. Lett.
26
,
464
466
(
2016
).
12.
Y.
Kato
and
M.
Horibe
, “
New permittivity measurement methods using resonant phenomena for high-permittivity materials
,”
IEEE Trans. Instrum. Meas.
66
,
1191
1200
(
2017
).
13.
J.
Krupka
and
J.
Mazierska
, “
Contactless measurements of resistivity of semiconductor wafers employing single-post and split-post dielectric-resonator techniques
,”
IEEE Trans. Instrum. Meas.
56
,
1839
1844
(
2007
).
14.
Y.
Kobayashi
, “
Microwave characterization of copper-clad dielectric laminate substrates
,”
IEICE Trans. Electronics
E90-C
,
2178
2184
(
2007
).
15.
J.
Krupka
and
W.
Strupinski
, “
Measurements of the sheet resistance and conductivity of thin epitaxial graphene and SiC films
,”
Appl. Phys. Lett.
96
,
082101
(
2010
).
16.
N.
Hirayama
,
A.
Nakayama
, and
H.
Yoshikawa
, “
Measurements of interface conductivity of copper-clad dielectric substrates at millimeter wave frequencies using TE02δ mode dielectric rod resonator excited by nrd guide
,” in
2018 Asia-Pacific Microwave Conference (APMC)
(
IEEE
,
2018
), pp.
1220
1222
.
17.
T.
Shimizu
and
Y.
Kobayashi
, “
Millimeter wave measurements of temperature dependence of complex permittivity of GaAs plates by a circular waveguide method
,” in
2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157)
(
IEEE
,
2001
), Vol.
3
, pp.
2195
2198
.
18.
V.
Giordano
,
Y.
Kersalé
, and
J.-J.
Boy
, “
Dielectric properties of La3Ga5SiO14 at microwave frequencies between 10 and 400 K
,”
Appl. Phys. Lett.
78
,
2545
2547
(
2001
).
19.
B.
Riddle
,
J.
Baker-Jarvis
, and
J.
Krupka
, “
Complex permittivity measurements of common plastics over variable temperatures
,”
IEEE Trans. Microwave Theory Tech.
51
,
727
733
(
2003
).
20.
H.
Yoshikawa
and
A.
Nakayama
, “
Measurements of complex permittivity at millimeter-wave frequencies with an end-loaded cavity resonator
,”
IEEE Trans. Microwave Theory Tech.
56
,
2001
2007
(
2008
).
21.
R.
Jamal
,
T.
Olivier
,
P.
Damien
,
D.
Nicolas
, and
V.
Serge
, “
Monitoring of electromagnetic characteristics of split cylinder resonator and dielectric material for temperature caraterization
,” in
2014 44th European Microwave Conference
(
IEEE
,
2014
), pp.
120
123
.
22.
T.
Charlet
,
O.
Tantot
,
N.
Delhote
,
C.
Hallépée
,
S.
Verdeyme
, and
D.
Nevo
, “
Microwave characterisation of the coefficient of thermal expansion and the thermal evolution of electric conductivity for metallised substrate
,” in
2020 50th European Microwave Conference (EuMC)
(
IEEE
,
2021
), pp.
905
908
.
23.
M.
Afsar
and
H.
Ding
, “
A novel open-resonator system for precise measurement of permittivity and loss-tangent
,”
IEEE Trans. Instrum. Meas.
50
,
402
405
(
2001
).
24.
H.
Suzuki
and
T.
Kamijo
, “
Millimeter-wave measurement of complex permittivity by perturbation method using open resonator
,”
IEEE Trans. Instrum. Meas.
57
,
2868
2873
(
2008
).
25.
T. H.
Tran
,
Y.
She
,
J.
Hirokawa
,
K.
Sakurai
,
Y.
Kogami
, and
M.
Ando
, “
Evaluation of effective conductivity of copper-clad dielectric laminate substrates in millimeter-wave bands using whispering gallery mode resonators
,”
IEICE Trans. Electron.
E92-C
,
1504
1511
(
2009
).
26.
J.-M. L.
Floch
,
R.
Bara
,
J. G.
Hartnett
,
M. E.
Tobar
,
D.
Mouneyrac
,
D.
Passerieux
,
D.
Cros
,
J.
Krupka
,
P.
Goy
, and
S.
Caroopen
, “
Electromagnetic properties of polycrystalline diamond from 35 K to room temperature and microwave to terahertz frequencies
,”
J. Appl. Phys.
109
,
094103
(
2011
).
27.
M. P.
Kirley
and
J. H.
Booske
, “
Terahertz conductivity of copper surfaces
,”
IEEE Trans. Terahertz Sci. Technol.
5
,
1012
1020
(
2015
).
28.
H.
Kawabata
and
Y.
Kobayashi
, “
The analysis of a balanced-type circular disk resonator excited by coaxial cable lines to measure the complex permittivity
,” in
APMC 2001. 2001 Asia-Pacific Microwave Conference (Cat. No. 01TH8577)
(
IEEE
,
2001
), Vol.
3
, pp.
1322
1325
.
29.
H.
Kawabata
,
K.-i.
Hasuike
,
Y.
Kobayashi
, and
Z.
Ma
, “
Multi-frequency measurements of complex permittivity of dielectric plates using higher-order modes of a balanced-type circular disk resonator
,” in
2006 European Microwave Conference
(
IEEE
,
2006
), pp.
388
391
.
30.
Y.
Kato
and
M.
Horibe
, “
Permittivity measurements and associated uncertainties up to 110 GHz in circular-disk resonator method
,” in
2016 46th European Microwave Conference (EuMC)
(
IEEE
,
2016
), pp.
1139
1142
.
31.
Y.
Kato
and
M.
Horibe
, “
Broadband permittivity measurements up to 170-GHz using balanced-type circular-disk resonator excited by 0.8-mm coaxial line
,”
IEEE Trans. Instrum. Meas.
68
,
1796
1805
(
2019
).
32.
K.
Takahashi
,
S.
Kikuchi
,
A.
Matsui
,
M.
Abe
, and
K.
Chouraku
, “
Complex permittivity measurements in a wide temperature range for printed circuit board material used in millimeter wave band
,” in
2020 IEEE 70th Electronic Components and Technology Conference (ECTC)
(
IEEE
,
2020
), pp.
938
945
.
33.
Y.
Kato
and
M.
Horibe
, “
Broadband conductivity measurement technique at millimeter-wave bands using a balanced-type circular disk resonator
,”
IEEE Trans. Microwave Theory Tech.
69
,
861
873
(
2021
).
34.
B.
Komiyama
,
M.
Kiyokawa
, and
T.
Matsui
, “
Open resonator for precision dielectric measurements in the 100 GHz band
,”
IEEE Trans. Microwave Theory Tech.
39
,
1792
1796
(
1991
).
35.
J. R.
Baker-Jarvis
,
M. D.
Janezic
,
B. F.
Riddle
,
R. T.
Johnk
,
C. L.
Holloway
,
R. G.
Geyer
, and
C. A.
Grosvenor
, “
Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, and negative-index materials
,”
NIST Technical Note 1536
,
National Institute Standards and Technology
,
Boulder, CO
,
2005
.
36.
E.
Li
,
Z.-P.
Nie
,
G.
Guo
,
Q.
Zhang
,
Z.
Li
, and
F.
He
, “
Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method
,”
Prog. Electromagn. Res.
92
,
103
120
(
2009
).
37.
See
Japan Fine Ceramics Co. Ltd.
, https://www.japan-fc.co.jp/en/products/cate01/cate0103/post-5.html for “
Physical properties of substrates
.”
38.
W. B.
Westphal
, “
Dielectric constant and loss data
,”
MIT Technical Report No. AFML-74-250
, Part 3 (
1977
).
39.
G.
Gold
and
K.
Helmreich
, “
A physical surface roughness model and its applications
,”
IEEE Trans. Microwave Theory Tech.
65
,
3720
3732
(
2017
).
40.
K.
Lomakin
,
G.
Gold
, and
K.
Helmreich
, “
Analytical waveguide model precisely predicting loss and delay including surface roughness
,”
IEEE Trans. Microwave Theory Tech.
66
,
2649
2662
(
2018
).
You do not currently have access to this content.