Superconducting quantum circuits are one of the leading quantum computing platforms. To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence. Here, we use terahertz scanning near-field optical microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon, one of the most characteristic components of the superconducting quantum processors. Using a recently developed vector calibration technique, we extract the THz permittivity from spectroscopy in proximity to the microwave feedline. Fitting the extracted permittivity to the Drude model, we find that silicon in the etched channel has a carrier concentration greater than buffer oxide etched silicon and we explore post-processing methods to reduce the carrier concentrations. Our results show that near-field THz investigations can be used to quantitatively evaluate and identify inhomogeneities in quantum devices.

1.
J. M.
Martinis
, “
Qubit metrology for building a fault-tolerant quantum computer
,”
npj Quantum Inf.
1
,
15005
(
2015
).
2.
N. P.
de Leon
,
K. M.
Itoh
,
D.
Kim
,
K. K.
Mehta
,
T. E.
Northup
,
H.
Paik
,
B. S.
Palmer
,
N.
Samarth
,
S.
Sangtawesin
, and
D. W.
Steuerman
, “
Materials challenges and opportunities for quantum computing hardware
,”
Science
372
(
6539
),
eabb2823
(
2021
).
3.
J. M.
Martinis
,
K. B.
Cooper
,
R.
McDermott
,
M.
Steffen
,
M.
Ansmann
,
K. D.
Osborn
,
K.
Cicak
,
S.
Oh
,
D. P.
Pappas
,
R. W.
Simmonds
, and
C. C.
Yu
, “
Decoherence in Josephson qubits from dielectric loss
,”
Phys. Rev. Lett.
95
,
210503
(
2005
).
4.
W. D.
Oliver
and
P. B.
Welander
, “
Materials in superconducting quantum bits
,”
MRS Bull.
38
,
816
825
(
2013
).
5.
C. E.
Murray
, “
Material matters in superconducting qubits
,” preprint arXiv:2106.05919 (
2021
).
6.
J.
Gao
,
M.
Daal
,
A.
Vayonakis
,
S.
Kumar
,
J.
Zmuidzinas
,
B.
Sadoulet
,
B. A.
Mazin
,
P. K.
Day
, and
H. G.
Leduc
, “
Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators
,”
Appl. Phys. Lett.
92
,
152505
(
2008
).
7.
A.
Megrant
,
C.
Neill
,
R.
Barends
,
B.
Chiaro
,
Y.
Chen
,
L.
Feigl
,
J.
Kelly
,
E.
Lucero
,
M.
Mariantoni
,
P. J. J.
O'Malley
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
Y.
Yin
,
J.
Zhao
,
C. J.
Palmstrøm
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Planar superconducting resonators with internal quality factors above one million
,”
Appl. Phys. Lett.
100
,
113510
(
2012
).
8.
C. J. K.
Richardson
,
N. P.
Siwak
,
J.
Hackley
,
Z. K.
Keane
,
J. E.
Robinson
,
B.
Arey
,
I.
Arslan
, and
B. S.
Palmer
, “
Fabrication artifacts and parallel loss channels in metamorphic epitaxial aluminum superconducting resonators
,”
Supercond. Sci. Technol.
29
,
064003
(
2016
).
9.
C. T.
Earnest
,
J. H.
Béjanin
,
T. G.
McConkey
,
E. A.
Peters
,
A.
Korinek
,
H.
Yuan
, and
M.
Mariantoni
, “
Substrate surface engineering for high-quality silicon/aluminum superconducting resonators
,”
Supercond. Sci. Technol.
31
,
125013
(
2018
).
10.
J. J.
Burnett
,
A.
Bengtsson
,
M.
Scigliuzzo
,
D.
Niepce
,
M.
Kudra
,
P.
Delsing
, and
J.
Bylander
, “
Decoherence benchmarking of superconducting qubits
,”
npj Quantum Inf.
5
,
54
(
2019
).
11.
P. W.
Anderson
,
B. I.
Halperin
, and
C. M.
Varma
, “
Anomalous low-temperature thermal properties of glasses and spin glasses
,”
Philos. Mag.
25
,
1
9
(
1972
).
12.
G. J.
Grabovskij
,
T.
Peichl
,
J.
Lisenfeld
,
G.
Weiss
, and
A. V.
Ustinov
, “
Strain tuning of individual atomic tunneling systems detected by a superconducting qubit
,”
Science
338
,
232
234
(
2012
).
13.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
,
124501
(
2019
).
14.
A. P.
Paz
,
I. V.
Lebedeva
,
I. V.
Tokatly
, and
A.
Rubio
, “
Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures
,”
Phys. Rev. B
90
,
224202
(
2014
).
15.
A.
Bruno
,
G.
De Lange
,
S.
Asaad
,
K. L.
Van Der Enden
,
N. K.
Langford
, and
L.
DiCarlo
, “
Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates
,”
Appl. Phys. Lett.
106
,
182601
(
2015
).
16.
J.
Burnett
,
A.
Bengtsson
,
D.
Niepce
, and
J.
Bylander
, “
Noise and loss of superconducting aluminium resonators at single photon energies
,”
J. Phys.: Conf. Ser.
969
,
012131
(
2018
).
17.
G.
Calusine
,
A.
Melville
,
W.
Woods
,
R.
Das
,
C.
Stull
,
V.
Bolkhovsky
,
D.
Braje
,
D.
Hover
,
D. K.
Kim
,
X.
Miloshi
,
D.
Rosenberg
,
A.
Sevi
,
J. L.
Yoder
,
E.
Dauler
, and
W. D.
Oliver
, “
Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators
,”
Appl. Phys. Lett.
112
,
062601
(
2018
).
18.
M. V. P.
Altoé
,
A.
Banerjee
,
C.
Berk
,
A.
Hajr
,
A.
Schwartzberg
,
C.
Song
,
M. A.
Ghadeer
,
S.
Aloni
,
M. J.
Elowson
,
J. M.
Kreikebaum
,
E. K.
Wong
,
S.
Griffin
,
S.
Rao
,
A.
Weber-Bargioni
,
A. M.
Minor
,
D. I.
Santiago
,
S.
Cabrini
,
I.
Siddiqi
, and
D. F.
Ogletree
, “
Localization and reduction of superconducting quantum coherent circuit losses
,” preprint arXiv:2012.07604 (
2020
).
19.
M.
Van Exter
,
C.
Fattinger
, and
D.
Grischkowsky
, “
Terahertz time-domain spectroscopy of water vapor
,”
Opt. Lett.
14
,
1128
1130
(
1989
).
20.
Y.
Yang
,
M.
Mandehgar
, and
D.
Grischkowsky
, “
Determination of the water vapor continuum absorption by THz-TDS and molecular response theory
,”
Opt. Express
22
,
4388
4403
(
2014
).
21.
N. A.
Aghamiri
,
F.
Huth
,
A. J.
Huber
,
A.
Fali
,
R.
Hillenbrand
, and
Y.
Abate
, “
Hyperspectral time-domain terahertz nano-imaging
,”
Opt. Express
27
,
24231
24242
(
2019
).
22.
F.
Keilmann
,
A. J.
Huber
, and
R.
Hillenbrand
, “
Nanoscale conductivity contrast by scattering-type near-field optical microscopy in the visible, infrared and THz domains
,”
J. Infrared Millimeter, Terahertz Waves
3
(
30
),
1255
1268
(
2009
).
23.
X.
Chen
,
D.
Hu
,
R.
Mescall
,
G.
You
,
D.
Basov
,
Q.
Dai
, and
M.
Liu
, “
Modern scattering-type scanning near-field optical microscopy for advanced material research
,”
Adv. Mater.
31
,
1804774
(
2019
).
24.
Z.
Yao
,
S.
Xu
,
D.
Hu
,
X.
Chen
,
Q.
Dai
, and
M.
Liu
, “
Nanoimaging and nanospectroscopy of polaritons with time resolved s-SNOM
,”
Adv. Opt. Mater.
8
,
1901042
(
2020
).
25.
H.-G.
von Ribbeck
,
M.
Brehm
,
D.
van der Weide
,
S.
Winnerl
,
O.
Drachenko
,
M.
Helm
, and
F.
Keilmann
, “
Spectroscopic THz near-field microscope
,”
Opt. Express
16
,
3430
3438
(
2008
).
26.
A.
Rakić
,
T.
Taimre
,
K.
Bertling
,
Y.
Lim
,
P.
Dean
,
A.
Valavanis
, and
D.
Indjin
, “
Sensing and imaging using laser feedback interferometry with quantum cascade lasers
,”
Appl. Phys. Rev.
6
,
021320
(
2019
).
27.
E. A.
Pogna
,
M.
Asgari
,
V.
Zannier
,
L.
Sorba
,
L.
Viti
, and
M. S.
Vitiello
, “
Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy
,”
Light Sci. Appl.
9
,
189
(
2020
).
28.
P.
Rubino
,
J.
Keeley
,
N.
Sulollari
,
A. D.
Burnett
,
A.
Valavanis
,
I.
Kundu
,
M. C.
Rosamond
,
L.
Li
,
E. H.
Linfield
,
A. G.
Davies
,
J. E.
Cunningham
, and
P.
Dean
, “
All-electronic phase-resolved THz microscopy using the self-mixing effect in a semiconductor laser
,”
ACS Photonics
8
,
1001
1006
(
2021
).
29.
R.
Lewis
, “
A review of terahertz detectors
,”
J. Phys. D: Appl. Phys.
52
,
433001
(
2019
).
30.
R. A.
Lewis
, “
Physical phenomena in electronic materials in the terahertz region
,”
Proc. IEEE
95
,
1641
1645
(
2007
).
31.
T. V. A. G.
de Oliveira
,
T.
Nörenberg
,
G.
Álvarez-Pérez
,
L.
Wehmeier
,
J.
Taboada-Gutiérrez
,
M.
Obst
,
F.
Hempel
,
E. J.
Lee
,
J. M.
Klopf
,
I.
Errea
,
A. Y.
Nikitin
,
S. C.
Kehr
,
P.
Alonso-Gonzalez
, and
L. M.
Eng
, “
Nanoscale-confined terahertz polaritons in a van der Waals crystal
,”
Adv. Mater.
33
,
2005777
(
2021
).
32.
M.
Plankl
,
P. F.
Junior
,
F.
Mooshammer
,
T.
Siday
,
M.
Zizlsperger
,
F.
Sandner
,
F.
Schiegl
,
S.
Maier
,
M. A.
Huber
,
M.
Gmitra
,
J.
Fabian
,
J. L.
Boland
,
T. L.
Cocker
, and
R.
Huber
, “
Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures
,”
Nat. Photonics
15
,
594–600
(
2021
).
33.
X.
Guo
,
K.
Bertling
, and
A. D.
Rakić
, “
Optical constants from scattering-type scanning near-field optical microscope
,”
Appl. Phys. Lett.
118
,
041103
(
2021
).
34.
H. T.
Stinson
,
A.
Sternbach
,
O.
Najera
,
R.
Jing
,
A. S.
Mcleod
,
T. V.
Slusar
,
A.
Mueller
,
L.
Anderegg
,
H. T.
Kim
,
M.
Rozenberg
, and
D. N.
Basov
, “
Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies
,”
Nat. Commun.
9
,
3604
(
2018
).
35.
C.
Chen
,
S.
Chen
,
R. P.
Lobo
,
C.
Maciel-Escudero
,
M.
Lewin
,
T.
Taubner
,
W.
Xiong
,
M.
Xu
,
X.
Zhang
,
X.
Miao
,
P.
Li
, and
R.
Hillenbrand
, “
Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials
,”
ACS Photonics
7
,
3499
3506
(
2020
).
36.
M.
Van Exter
and
D.
Grischkowsky
, “
Carrier dynamics of electrons and holes in moderately doped silicon
,”
Phys. Rev. B
41
,
12140
(
1990
).
37.
H.
Angermann
,
T.
Dittrich
, and
H.
Flietner
, “
Investigation of native-oxide growth on HF-treated Si (111) surfaces by measuring the surface-state distribution
,”
Appl. Phys. A
59
,
193
197
(
1994
).
38.
V.
Schmidt
,
S.
Senz
, and
U.
Gösele
, “
Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires
,”
Appl. Phys. A
86
,
187
191
(
2006
).
39.
D. S.
Kim
,
M. M.
Hilali
,
A.
Rohatgi
,
K.
Nakano
,
A.
Hariharan
, and
K.
Matthei
, “
Development of a phosphorus spray diffusion system for low-cost silicon solar cells
,”
J. Electrochem. Soc.
153
,
A1391
(
2006
).
40.
D.
Kalacheva
,
G.
Fedorov
,
A.
Kulakova
,
J.
Zotova
,
E.
Korostylev
,
I.
Khrapach
,
A. V.
Ustinov
, and
O. V.
Astafiev
, “
Improving the quality factor of superconducting resonators by post-process surface treatment
,”
AIP Conf. Proc.
2241
,
020018
(
2020
).
41.
P. J.
De Visser
,
J. J. A.
Baselmans
,
S. J. C.
Yates
,
P.
Diener
,
A.
Endo
, and
T. M.
Klapwijk
, “
Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations
,”
Appl. Phys. Lett.
100
,
162601
(
2012
).
42.
H. U.
Yang
,
E.
Hebestreit
,
E. E.
Josberger
, and
M. B.
Raschke
, “
A cryogenic scattering-type scanning near-field optical microscope
,”
Rev. Sci. Instrum.
84
,
023701
(
2013
).
43.
D.
Lang
,
J.
Döring
,
T.
Nörenberg
,
Á.
Butykai
,
I.
Kézsmárki
,
H.
Schneider
,
S.
Winnerl
,
M.
Helm
,
S. C.
Kehr
, and
L. M.
Eng
, “
Infrared nanoscopy down to liquid helium temperatures
,”
Rev. Sci. Instrum.
89
,
033702
(
2018
).
44.
P. C.
Zalm
, “
Ultra shallow doping profiling with SIMS
,”
Rep. Prog. Phys.
58
,
1321
(
1995
).
45.
S.
Eswara
,
A.
Pshenova
,
E.
Lentzen
,
G.
Nogay
,
M.
Lehmann
,
A.
Ingenito
,
Q.
Jeangros
,
F.-J.
Haug
,
N.
Valle
,
P.
Philipp
,
A.
Hessler-Wyser
, and
T.
Wirtz
, “
A method for quantitative nanoscale imaging of dopant distributions using secondary ion mass spectrometry: An application example in silicon photovoltaics
,”
MRS Commun.
9
,
916
923
(
2019
).
You do not currently have access to this content.