Recently, significant progress in the development of III–V/Si dual-junction solar cells has been achieved. This not only boosts the efficiency of Si-based photovoltaic solar cells but also offers the possibility of highly efficient green hydrogen production via solar water splitting. Using such dual-junction cells in a highly integrated photoelectrochemical approach and aiming for upscaled devices with solar-to-hydrogen (STH) efficiencies beyond 20%, however, the following frequently neglected contrary effects become relevant: (i) light absorption in the electrolyte layer in front of the top absorber and (ii) the impact of this layer on the Ohmic and transport losses. Here, we initially model the influence of the electrolyte layer thickness on the maximum achievable solar-to-hydrogen efficiency of a device with an Si bottom cell and show how the top absorber bandgap has to be adapted to minimize efficiency losses. Then, the contrary effects of increasing Ohmic and transport losses with the decreasing electrolyte layer thickness are evaluated. This allows us to estimate an optimum electrolyte layer thickness range that counterbalances the effects of parasitic absorption and Ohmic/transport losses. We show that fine-tuning of the top absorber bandgap and the water layer thickness can lead to an STH efficiency increase of up to 1% absolute. Our results allow us to propose important design rules for high-efficiency photoelectrochemical devices based on multi-junction photoabsorbers.

1.
R.
van de Krol
and
B. A.
Parkinson
, “
Perspectives on the photoelectrochemical storage of solar energy
,”
MRS Energy Sustainability
4
,
e13
(
2017
).
2.
S.
Ardo
,
D.
Fernandez Rivas
,
M. A.
Modestino
,
V.
Schulze Greiving
,
F.
Abdi
,
E.
Alarcon-Llado
,
V.
Artero
,
K. E.
Ayers
,
C.
Battaglia
,
J.-P.
Becker
,
D.
Bederak
,
A.
Berger
,
F.
Buda
,
E.
Chinello
,
B.
Dam
,
V. D.
Palma
,
T.
Edvinsson
,
K.
Fujii
,
H. J.
Gardeniers
,
H.
Geerlings
,
S. M.
Hosseini Hashemi
,
S.
Haussener
,
F. A.
Houle
,
J.
Huskens
,
B.
James
,
K.
Konrad
,
A.
Kudo
,
P. P.
Kunturu
,
D.
Lohse
,
B.
Mei
,
E.
Miller
,
G.
Moere
,
J.
Muller
,
K. L.
Orchard
,
T.
Rosser
,
F. H.
Saadi
,
J.-W.
Schuttauf
,
B. J.
Seger
,
S. W.
Sheehan
,
W. A.
Smith
,
J.
Spurgeon
,
M.
Tang
,
R.
van de Krol
,
P. C. K.
Vesborg
, and
P.
Westerik
, “
Pathways to electrochemical solar-hydrogen technologies
,”
Energy Environ. Sci.
11
,
2768
2783
(
2018
).
3.
M. R.
Shaner
,
H. A.
Atwater
,
N. S.
Lewis
, and
E. W.
McFarland
, “
A comparative technoeconomic analysis of renewable hydrogen production using solar energy
,”
Energy Environ. Sci.
9
,
2354
2371
(
2016
).
4.
W.-H.
Cheng
,
M. H.
Richter
,
M. M.
May
,
J.
Ohlmann
,
D.
Lackner
,
F.
Dimroth
,
T.
Hannappel
,
H. A.
Atwater
, and
H.-J.
Lewerenz
, “
Monolithic photoelectrochemical device for direct water splitting with 19% efficiency
,”
ACS Energy Lett.
3
,
1795
1800
(
2018
).
5.
B. A.
Pinaud
,
J. D.
Benck
,
L. C.
Seitz
,
A. J.
Forman
,
Z.
Chen
,
T. G.
Deutsch
,
B. D.
James
,
K. N.
Baum
,
G. N.
Baum
,
S.
Ardo
,
H.
Wang
,
E.
Miller
, and
T. F.
Jaramillo
, “
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
,”
Energy Environ. Sci.
6
,
1983
2002
(
2013
).
6.
J.
Tournet
,
Y.
Lee
,
S. K.
Karuturi
,
H. H.
Tan
, and
C.
Jagadish
, “
III–V semiconductor materials for solar hydrogen production: Status and prospects
,”
ACS Energy Lett.
5
,
611
622
(
2020
).
7.
R.
Cariou
,
J.
Benick
,
F.
Feldmann
,
O.
Höhn
,
H.
Hauser
,
P.
Beutel
,
N.
Razek
,
M.
Wimplinger
,
B.
Bläsi
,
D.
Lackner
,
M.
Hermle
,
G.
Siefer
,
S. W.
Glunz
,
A. W.
Bett
, and
F.
Dimroth
, “
III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
,”
Nat. Energy
3
,
326
333
(
2018
).
8.
L.
Chen
,
M.
Alqahtani
,
C.
Levallois
,
A.
Létoublon
,
J.
Stervinou
,
R.
Piron
,
S.
Boyer-Richard
,
J.-M.
Jancu
,
T.
Rohel
,
R.
Bernard
,
Y.
Léger
,
N.
Bertru
,
J.
Wu
,
I. P.
Parkin
, and
C.
Cornet
, “
Assessment of GaPSb/Si tandem material association properties for photoelectrochemical cells
,”
Sol. Energy Mater. Sol. Cells
221
,
110888
(
2021
).
9.
S.
Vanka
,
B.
Zhou
,
R. A.
Awni
,
Z.
Song
,
F. A.
Chowdhury
,
X.
Liu
,
H.
Hajibabaei
,
W.
Shi
,
Y.
Xiao
,
I. A.
Navid
,
A.
Pandey
,
R.
Chen
,
G. A.
Botton
,
T. W.
Hamann
,
D.
Wang
,
Y.
Yan
, and
Z.
Mi
, “
InGaN/Si double-junction photocathode for unassisted solar water splitting
,”
ACS Energy Lett.
5
,
3741
3751
(
2020
).
10.
D.
Lackner
,
O.
Höhn
,
R.
Müller
,
P.
Beutel
,
P.
Schygulla
,
H.
Hauser
,
F.
Predan
,
G.
Siefer
,
M.
Schachtner
,
J.
Schön
,
J.
Benick
,
M.
Hermle
, and
F.
Dimroth
, “
Two-terminal direct wafer-bonded GaInP/AlGaAs//Si triple-junction solar cell with AM1.5G efficiency of 34.1%
,”
Sol. RRL
4
,
2000210
(
2020
).
12.
M.
Feifel
,
D.
Lackner
,
J.
Ohlmann
,
J.
Benick
,
M.
Hermle
, and
F.
Dimroth
, “
Direct growth of a GaInP/GaAs/Si triple-junction solar cell with 22.3% AM1.5G efficiency
,”
Sol. RRL
3
,
1900313
(
2019
).
13.
M.
Feifel
,
D.
Lackner
,
J.
Schön
,
J.
Ohlmann
,
J.
Benick
,
G.
Siefer
,
F.
Predan
,
M.
Hermle
, and
F.
Dimroth
, “
Epitaxial GaInP/GaAs/Si triple-junction solar cell with 25.9% AM1.5G efficiency enabled by transparent metamorphic AlxGa1−xAsyP1−y step-graded buffer structures
,”
Sol. RRL
5
,
2000763
(
2021
).
14.
A.
Al-Ashouri
,
E.
Köhnen
,
B.
Li
,
A.
Magomedov
,
H.
Hempel
,
P.
Caprioglio
,
J. A.
Márquez
,
A. B.
Morales Vilches
,
E.
Kasparavicius
,
J. A.
Smith
,
N.
Phung
,
D.
Menzel
,
M.
Grischek
,
L.
Kegelmann
,
D.
Skroblin
,
C.
Gollwitzer
,
T.
Malinauskas
,
M.
Jošt
,
G.
Matič
,
B.
Rech
,
R.
Schlatmann
,
M.
Topič
,
L.
Korte
,
A.
Abate
,
B.
Stannowski
,
D.
Neher
,
M.
Stolterfoht
,
T.
Unold
,
V.
Getautis
, and
S.
Albrecht
, “
Monolithic perovskite/silicon tandem solar cell with <29% efficiency by enhanced hole extraction
,”
Science
370
,
1300
1309
(
2020
).
15.
E.
Köhnen
,
P.
Wagner
,
F.
Lang
,
A.
Cruz
,
B.
Li
,
M.
Roß
,
M.
Jošt
,
A. B.
Morales-Vilches
,
M.
Topic
,
M.
Stolterfoht
,
D.
Neher
,
L.
Korte
,
B.
Rech
,
R.
Schlatmann
,
B.
Stannowski
, and
S.
Albrecht
, “
27.9% Efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells
,”
Sol. RRL
5
,
2100244
(
2021
).
16.
M. M.
May
,
H.
Döscher
, and
J.
Turner
, “
High-efficiency water splitting systems
,” in
Integrated Solar Fuel Generators, Energy and Environment Series
, edited by
I. D.
Sharp
,
H. A.
Atwater
, and
H.-J.
Lewerenz
(
The Royal Society of Chemistry
,
2018
), Chap. 12, pp.
454
499
.
17.
B.
Parkinson
, “
On the efficiency and stability of photoelectrochemical devices
,”
Acc. Chem. Res.
17
,
431
437
(
1984
).
18.
A.
Murphy
,
P.
Barnes
,
L.
Randeniya
,
I.
Plumb
,
I.
Grey
,
M.
Horne
, and
J.
Glasscock
, “
Efficiency of solar water splitting using semiconductor electrodes
,”
Int. J. Hydrogen Energy
31
,
1999
2017
(
2006
).
19.
H.
Döscher
,
J. F.
Geisz
,
T. G.
Deutsch
, and
J. A.
Turner
, “
Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices
,”
Energy Environ. Sci.
7
,
2951
2956
(
2014
).
20.
R. M.
Pope
and
E. S.
Fry
, “
Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements
,”
Appl. Opt.
36
,
8710
8723
(
1997
).
21.
M. M.
May
,
D.
Lackner
,
J.
Ohlmann
,
F.
Dimroth
,
R.
van de Krol
,
T.
Hannappel
, and
K.
Schwarzburg
, “
On the benchmarking of multi-junction photoelectrochemical fuel generating devices
,”
Sustainable Energy Fuels
1
,
492
503
(
2017
).
22.
C. A.
Gueymard
, “
The sun's total and spectral irradiance for solar energy applications and solar radiation models
,”
Sol. Energy
76
,
423
453
(
2004
).
23.
L.
Kou
,
D.
Labrie
, and
P.
Chylek
, “
Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range
,”
Appl. Opt.
32
,
3531
3540
(
1993
).
24.
M. M.
May
and
M.
Kölbach
(
2021
). “YaSoFo-Yet Another SOlar Fuels Optimizer,”
Zenodo
.
25.
K.
Obata
,
A.
Mokeddem
, and
F. F.
Abdi
, “
Multiphase fluid dynamics simulations of product crossover in solar-driven, membrane-less water splitting
,”
Cell Rep. Phys. Sci.
2
,
100358
(
2021
).

Supplementary Material

You do not currently have access to this content.