Hematite (α-Fe2O3) is a promising photoanode material for photoelectrochemical (PEC) water splitting due to its appropriate bandgap, good stability, and earth-abundance. However, the poor charge transfer property and sluggish kinetics of water oxidation limit the PEC performance of α-Fe2O3 photoanodes. Herein, a thin NiOx buffer layer was introduced between the Ti doped α-Fe2O3 (Fe2O3-Ti) layer and the fluorine-doped tin oxide (FTO) substrate without affecting the nanowire morphology and light absorption property of Fe2O3-Ti. This buffer layer can apparently suppress the charge recombination by mitigating the lattice mismatching between the Fe2O3-Ti film and the FTO substrate. In addition, the good conductivity of the NiOx film from the non-stoichiometric composition is also beneficial to the charge transfer. As a consequence, the photocurrent density was greatly improved by adding the NiOx layer in the Fe2O3-Ti photoanode, reaching 1.32 mA·cm−2 at 1.23 VRHE without any co-catalyst and sacrificial agent. This work gives a detailed analysis of the back contact in the hematite-based photoanode and provides an effective strategy for underlayer interface optimization.

1.
I.
Roger
,
M. A.
Shipman
, and
M. D.
Symes
,
Nat. Rev. Chem.
1
(
1
),
0003
(
2017
).
2.
Y.
Chen
,
X.
Feng
,
Y.
Liu
,
X.
Guan
,
C.
Burda
, and
L.
Guo
,
ACS Energy Lett.
5
(
3
),
844
(
2020
).
3.
W.
Yang
,
R. R.
Prabhakar
,
J.
Tan
,
S. D.
Tilley
, and
J.
Moon
,
Chem. Soc. Rev.
48
(
19
),
4979
(
2019
).
4.
Y.
Chen
,
H.
Xia
,
X.
Feng
,
Y.
Liu
,
W.
Zheng
,
L.
Ma
, and
R.
Li
,
J. Energy Chem.
52
,
343
(
2021
).
5.
C.
Li
,
T.
Wang
,
Z.
Luo
,
S.
Liu
, and
J.
Gong
,
Small
12
(
25
),
3415
(
2016
).
6.
Y.
Ling
,
G.
Wang
,
D. A.
Wheeler
,
J. Z.
Zhang
, and
Y.
Li
,
Nano Lett.
11
(
5
),
2119
(
2011
).
7.
S.
Shen
,
S. A.
Lindley
,
X.
Chen
, and
J. Z.
Zhang
,
Energy Environ. Sci.
9
(
9
),
2744
(
2016
).
8.
S. S.
Yi
,
B. R.
Wulan
,
J. M.
Yan
, and
Q.
Jiang
,
Adv. Funct. Mater.
29
(
11
),
1801902
(
2019
).
9.
E.
Samuel
,
B.
Joshi
,
M. W.
Kim
,
M. T.
Swihart
, and
S. S.
Yoon
,
Nano Energy
72
,
104648
(
2020
).
10.
Y.
Chen
,
W.
Zheng
,
S.
Murcia-López
,
F.
Lv
,
J. R.
Morante
,
L.
Vayssieres
, and
C.
Burda
,
J. Mater. Chem. C
9
(
11
),
3726
(
2021
).
11.
C.
Ros
,
T.
Andreu
, and
J. R.
Morante
,
J. Mater. Chem. A
8
(
21
),
10625
(
2020
).
12.
M.
Li
,
Y.
Yang
,
Y.
Ling
,
W.
Qiu
,
F.
Wang
,
T.
Liu
,
Y.
Song
,
X.
Liu
,
P.
Fang
,
Y.
Tong
, and
Y.
Li
,
Nano Lett.
17
(
4
),
2490
(
2017
).
13.
Y.
Chen
,
Y.
Liu
,
F.
Wang
,
X.
Guan
, and
L.
Guo
,
J. Energy Chem.
61
,
469
(
2021
).
14.
T.
Jiao
,
C.
Lu
,
D.
Zhang
,
K.
Feng
,
S.
Wang
,
Z.
Kang
, and
J.
Zhong
,
Appl. Catal., B
269
,
118768
(
2020
).
15.
F. L.
Formal
,
M.
Grätzel
, and
K.
Sivula
,
Adv. Funct. Mater.
20
(
7
),
1099
(
2010
).
16.
T.
Hisatomi
,
J.
Brillet
,
M.
Cornuz
,
F. L.
Formal
,
N.
Tetreault
,
K.
Sivula
, and
M.
Gratzel
,
Faraday Discuss.
155
,
223
(
2012
).
17.
T.
Hisatomi
,
H.
Dotan
,
M.
Stefik
,
K.
Sivula
,
A.
Rothschild
,
M.
Grätzel
, and
N.
Mathews
,
Adv. Mater.
24
(
20
),
2699
(
2012
).
18.
Z.
Luo
,
T.
Wang
,
J.
Zhang
,
C.
Li
,
H.
Li
, and
J.
Gong
,
Angew. Chem., Int. Ed.
56
(
42
),
12878
(
2017
).
19.
Y.
Hu
,
F.
Boudoire
,
M. T.
Mayer
,
S.
Yoon
,
M.
Graetzel
, and
A.
Braun
,
J. Phys. Chem. C
125
(
17
),
9158
(
2021
).
20.
L.
Steier
,
I.
Herraiz-Cardona
,
S.
Gimenez
,
F.
Fabregat-Santiago
,
J.
Bisquert
,
S. D.
Tilley
, and
M.
Grätzel
,
Adv. Funct. Mater.
24
(
48
),
7681
(
2014
).
21.
S.
Byun
,
B.
Kim
,
S.
Jeon
, and
B.
Shin
,
J. Mater. Chem. A
5
(
15
),
6905
(
2017
).
22.
M. L.
Grilli
,
F.
Menchini
,
T.
Dikonimos
,
P.
Nunziante
,
L.
Pilloni
,
M.
Yilmaz
,
A.
Piegari
, and
A.
Mittiga
,
Semicond. Sci. Technol.
31
(
5
),
055016
(
2016
).
23.
H.
Lee
,
W.
Yang
,
J.
Tan
,
Y.
Oh
,
J.
Park
, and
J.
Moon
,
ACS Energy Lett.
4
(
5
),
995
(
2019
).
24.
K.
Kaneko
,
T.
Nomura
,
I.
Kakeya
, and
S.
Fujita
,
Appl. Phys. Express
2
,
075501
(
2009
).
25.
R.
Bekkari
,
L.
Laânab
, and
B.
Jaber
,
J. Mater. Sci.: Mater. Electron.
31
(
18
),
15129
(
2020
).
26.
Y. H.
Wu
,
W. R.
Guo
,
M.
Mishra
,
Y. C.
Huang
,
J. K.
Chang
, and
T. C.
Lee
,
ACS Appl. Nano Mater.
1
(
7
),
3145
(
2018
).
27.
Y.
Yuan
,
J.
Gu
,
K. H.
Ye
,
Z.
Chai
,
X.
Yu
,
X.
Chen
,
C.
Zhao
,
Y.
Zhang
, and
W.
Mai
,
ACS Appl. Mater. Interfaces
8
(
25
),
16071
(
2016
).
28.
L.
Li
,
C.
Zhang
,
Z.
Yuan
,
X.
Xu
, and
Z.
Song
,
Appl. Surf. Sci.
480
,
749
(
2019
).
29.
C.
Zhang
,
L.
Li
,
Z.
Yuan
,
X.
Xu
,
Z.
Song
, and
Y. R.
Zhang
,
Miner. Eng.
146
,
106107
(
2020
).
30.
J.
Wang
,
M.
Wang
,
T.
Zhang
,
Z.
Wang
,
P.
Guo
,
J.
Su
, and
L.
Guo
,
ACS Appl. Mater. Interfaces
10
(
15
),
12594
(
2018
).
31.
P.
Peerakiatkhajohn
,
J. H.
Yun
,
H.
Chen
,
M.
Lyu
,
T.
Butburee
, and
L.
Wang
,
Adv. Mater.
28
(
30
),
6405
(
2016
).
32.
X.
Xie
,
K.
Li
, and
W. D.
Zhang
,
RSC Adv.
6
(
78
),
74234
(
2016
).
33.
M. H.
Pham
,
C. T.
Dinh
,
G. T.
Vuong
,
N. D.
Ta
, and
T. O.
Do
,
Phys. Chem. Chem. Phys.
16
(
13
),
5937
(
2014
).
34.
H.
Liang
,
J.
Lin
,
H.
Jia
,
S.
Chen
,
J.
Qi
,
J.
Cao
,
T.
Lin
,
W.
Fei
, and
J.
Feng
,
J. Power Sources
378
,
248
(
2018
).
35.
P. S.
Chandrasekhar
,
Y. H.
Seo
,
Y. J.
Noh
, and
S. I.
Na
,
Appl. Surf. Sci.
481
,
588
(
2019
).
36.
J.
Qu
,
K.
Zhang
,
H.
Gamal
,
J.
Wang
, and
A. M.
Abdelkader
,
Sol. Energy
216
,
238
(
2021
).
37.
Y.
Fu
,
C. L.
Dong
,
W.
Zhou
,
Y. R.
Lu
,
Y. C.
Huang
,
Y.
Liu
,
P.
Guo
,
L.
Zhao
,
W.-C.
Chou
, and
S.
Shen
,
Appl. Catal., B
260
,
118206
(
2020
).

Supplementary Material

You do not currently have access to this content.