The present drive for higher bandwidth has moved the mobile carrier frequency range to >5 GHz and possibly to >20 GHz in the near future. This has fueled the rapid development of 5 G and mm-wave technologies. The increased bandwidths available in the mm-wave frequency range allow for applications that require high-data-rate communications, which is not possible at lower frequencies due to Shannon's Capacity Theorem. However, the mm-wave frequency also presents a challenge to device performance due to the limitation on material properties. Many incumbent materials, such as silicon, ceramic, and polymer based substrates, suffer from high dielectric loss, rough surface, or poor durability to process chemistry. Silicate glass, on the other hand, has been shown to exhibit low dielectric loss, smooth surface, and high resistance to process chemistry. In addition, modern manufacturing technology has enabled silicate glass to be made with large size and thin form factor, which provides a clear advantage to lowering the cost. While many attributes of glass may be already familiar to the general scientific community, dielectric properties in the mm-wave frequency range have not been extensively reviewed. In this report, we show that mm-wave dielectric property can be changed by glass composition and post-forming processes. We also show examples of mm-wave devices that can be made with glass.

1.
K.
Hayashi
,
S.
Nomura
,
Y.
Matsuo
,
T.
Ogawa
, and
Y.
Kuroiwa
,
Active-Matrix Devices Posters
(
SID
,
2019
), Vol.
P-102
.
2.
A. O.
Watanabe
 et al., “
Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias
,” in
IEEE Transactions on Microwave Theory and Techniques
(
IEEE
,
2020
), Vol.
68
, No.
12
, pp.
5082
5092
.
3.
I. D.
Raistrick
,
D. R.
Franceschetti
, and
J. R.
MacDonald
,
Impedance Spectroscopy
, 2nd ed (
Wiley
,
2005
), Chap. 2, pp.
27
121
.
4.
H.
Namikawa
,
J. Non-Cryst. Solids
18
,
173
(
1975
).
5.
J.
Stevels
,
J. Non-Cryst. Solids
73
,
165
(
1985
).
6.
F.
Henn
,
G.
Garcia-Belmonte
,
J.
Bisquert
,
S.
Devautour-Vinot
, and
J.
Giuntini
,
J. Non-Cryst. Solids
354
,
3443
(
2008
).
7.
L.
Cai
,
Y.
Shi
,
K.
Hrdina
,
L.
Moore
,
J.
Wu
,
L.
Daemen
, and
Y.
Cheng
,
Phys. Rev. B
97
,
054311
(
2018
).
8.
P.
Lunkenheimer
and
A.
Loidl
,
Phys. Rev. Lett.
91
,
207601
(
2003
).
9.
A. L.
Cullen
and
P. K.
Yu
,
Proc. R. Soc. London, Ser. A
325
,
493
(
1971
).
10.
J.
Baker-Jarvis
 et al., “
Dielectric characterization of low-loss materials a comparison of techniques
,” in
IEEE Transactions on Dielectrics and Electrical Insulation
(
IEEE
,
1998
), Vol.
5
, No.
4
, pp.
571
577
.
11.
C. H.
Hsieh
,
H.
Jain
, and
E. I.
Kamitsos
,
J. Appl. Phys.
80
,
1704
(
1996
).
12.
M.
Naftaly
and
R. E.
Miles
,
J. Appl. Phys.
102
,
043517
(
2007
).
13.
R. D.
Shannon
,
J. Appl. Phys.
73
,
348
(
1993
).
14.
J. A.
Bruce
,
M. D.
Ingram
,
M. A.
MacKenzie
, and
R.
Syed
,
Solid State Ionics
18–19
,
410
414
(
1986
).
15.
H.
Mehrer
,
A. W.
Imre
, and
E.
Tanguep-Nijokep
,
J. Phys.: Conf. Ser.
106
,
012001
(
2008
).
16.
M. T.
Lanagan
,
L.
Cai
,
L.
Lamberson
,
J.
Wu
,
E.
Streltsova
, and
N.
Smith
,
Appl. Phys. Lett.
116
,
222902
(
2020
).
17.
W.
Holland
and
G.
Beall
,
Glass-Ceramic Technology
(
Wiley
,
2012
).
18.
I. M.
Reaney
and
D.
Iddles
,
J. Am. Ceram. Soc.
89
,
2063
2072
(
2006
).
19.
M.
Letz
, “
Microwave dielectric properties of glasses and bulk glass ceramics
,” in
Microwave Materials and Applications
, edited by
M. T.
Sebastian
,
H.
Jantunen
, and
R.
Ubic
(
Wiley
,
New York
,
2017
), p.
345
.
20.
M. T.
Sebastian
,
R.
Ubic
, and
H.
Jantunen
,
Int. Mater. Rev.
60
,
392
(
2015
).
21.
M.
Geremew
,
D. W.
Hawtof
, and
D. M.
Noni
,
U.S. patent USUS2013/0323463A1
(
2013
).
22.
W.
van Gemert
,
H.
van Ass
, and
J.
Stevels
,
J. Non-Cryst. Solids
16
,
281
(
1974
).
23.
W.
Mutter
, U.S. patent US4530736A (
1985
).
You do not currently have access to this content.